Cepus V, Scheidig A J, Goody R S, Gerwert K
Lehrstuhl für Biophysik, Fakultät Biologie, Ruhr-Universität, Bochum, Germany.
Biochemistry. 1998 Jul 14;37(28):10263-71. doi: 10.1021/bi973183j.
FTIR difference spectroscopy has been established as a new tool to study the GTPase reaction of H-ras p21 (Ras) in a time-resolved mode at atomic resolution without crystallization. The phosphate vibrations were analyzed using site specifically 18O-labeled caged GTP isotopomers. One nonbridging oxygen per nucleotide was replaced for an 18O isotope in the alpha-, beta-, or gamma-position of the phosphate chain. In photolysis experiments with free caged GTP, strong vibrational coupling was observed among all phosphate groups. The investigation of Rascaged GTP photolysis and the subsequent hydrolysis reaction of RasGTP showed that the phosphate vibrations are largely decoupled by interaction with the protein in contrast to free GTP. The characteristic isotope shifts allow band assignments to isolated alpha-, beta-, and gamma-phosphate vibrations of caged GTP, GTP, and the liberated inorganic phosphate. The unusually low frequency of the beta (PO2-) vibration of Ras-bound GTP, as compared to free GTP, indicates a large decrease in the P-O bond order. The bond order decrease reveals that the oxygen atoms of the beta (PO2-) group interact much more strongly with the protein environment than the gamma-oxygen atoms. Thereby, electrons are withdrawn from the beta-phosphorus, and thus also from the beta/gamma-bridging oxygen. This leads to partial bond breakage or at least weakening of the bond between the beta/gamma-bridging oxygen and the gamma-phosphorus atom as a putative early step of the GTP hydrolysis. Based on these results, we propose a key role of the beta-phosphate for GTP hydrolysis. The assignments of phosphate bands provide a crucial marker for further time-resolved FTIR studies of the GTPase reaction of Ras.
傅里叶变换红外差示光谱法已成为一种新工具,可在无需结晶的情况下,以原子分辨率在时间分辨模式下研究H-ras p21(Ras)的GTPase反应。使用位点特异性18O标记的笼形GTP同位素异构体分析磷酸盐振动。每个核苷酸的一个非桥连氧被18O同位素取代,位于磷酸链的α、β或γ位置。在游离笼形GTP的光解实验中,观察到所有磷酸基团之间存在强烈的振动耦合。对Ras笼形GTP光解以及随后的RasGTP水解反应的研究表明,与游离GTP相比,磷酸盐振动在很大程度上通过与蛋白质的相互作用而解耦。特征同位素位移允许对笼形GTP、GTP和释放的无机磷酸盐的孤立α、β和γ磷酸盐振动进行谱带归属。与游离GTP相比,Ras结合的GTP的β(PO2-)振动频率异常低,表明P-O键级大幅降低。键级降低表明β(PO2-)基团的氧原子与蛋白质环境的相互作用比γ-氧原子更强。由此,电子从β-磷中被抽出,从而也从β/γ桥连氧中被抽出。这导致β/γ桥连氧与γ-磷原子之间的键部分断裂或至少减弱,这被认为是GTP水解的早期步骤。基于这些结果,我们提出β-磷酸盐在GTP水解中起关键作用。磷酸盐谱带的归属为进一步对Ras的GTPase反应进行时间分辨傅里叶变换红外研究提供了关键标记。