Suga H, Cowan J A, Szostak J W
Department of Molecular Biology, Massachusetts General Hospital, Boston 02114, USA.
Biochemistry. 1998 Jul 14;37(28):10118-25. doi: 10.1021/bi980432a.
Most studies of the roles of catalytic metal ions in ribozymes have focused on inner-sphere coordination of the divalent metal ions to the substrate or ribozyme. However, divalent metal ions are strongly hydrated in water, and some proteinenzymes, such as Escherichia coli RNase H and exonuclease III, are known to use metal cofactors in their fully hydrated form [Duffy, T. H., and Nowak, T. (1985) Biochemistry 24, 1152-1160; Jou, R., and Cowan, J. A. (1991) J. Am. Chem. Soc. 113, 6685-6686]. It is therefore important to consider the possibility of outer-sphere coordination of catalytic metal ions in ribozymes. We have used an exchange-inert metal complex, cobalt hexaammine, to show that the catalytic metal ion in an acyl-transferase ribozyme acts through outer-sphere coordination. Our studies provide an example of a fully hydrated Mg2+ ion that plays an essential role in ribozyme catalysis. Kinetic studies of wild-type and mutant ribozymes suggest that a pair of tandem G:U wobble base pairs adjacent to the reactive center constitute the metal-binding site. This result is consistent with recent crystallographic studies [Cate, J. H., and Doudna, J. A. (1996) Structure 4, 1221-1229; Cate, J. H., Gooding, A. R., Podell, E., Zhou, K., Golden, B. L., Kundrot, C. E., Cech, T. R., and Doudna, J. A. (1996) Science 273, 1678-1685; Cate, J. H., Hanna, R. L., and Doudna, J. A. (1997) Nat. Struct. Biol. 4, 553-558] showing that tandem wobble base pairs are good binding sites for metal hexaammines. We propose a model in which the catalytic metal ion is bound in the major groove of the tandem wobble base pairs, is precisely positioned by the ribozyme within the active site, and stabilizes the developing oxyanion in the transition state. Our results may have significant implications for understanding the mechanism of protein synthesis [Noller, H. F., Hoffarth, V., and Zimniak, L. (1992) Science 256, 1416-1419].
大多数关于催化金属离子在核酶中作用的研究都集中在二价金属离子与底物或核酶的内球配位上。然而,二价金属离子在水中强烈水合,并且已知一些蛋白质酶,如大肠杆菌核糖核酸酶H和核酸外切酶III,以其完全水合的形式使用金属辅因子[达菲,T. H.,和诺瓦克,T.(1985年)《生物化学》24卷,1152 - 1160页;乔,R.,和考恩,J. A.(1991年)《美国化学会志》113卷,6685 - 6686页]。因此,考虑催化金属离子在核酶中进行外球配位的可能性很重要。我们使用了一种交换惰性金属配合物六氨合钴,以表明酰基转移酶核酶中的催化金属离子通过外球配位起作用。我们的研究提供了一个完全水合的Mg²⁺离子在核酶催化中起重要作用的例子。对野生型和突变型核酶的动力学研究表明,与反应中心相邻的一对串联G:U摆动碱基对构成了金属结合位点。这一结果与最近的晶体学研究[凯特,J. H.,和杜德纳,J. A.(1996年)《结构》4卷,1221 - 1229页;凯特,J. H.,古丁,A. R.,波德尔,E.,周,K.,戈尔登,B. L.,昆德洛特,C. E.,切赫,T. R.,和杜德纳,J. A.(1996年)《科学》273卷,1678 - 1685页;凯特,J. H.,汉纳,R. L.,和杜德纳,J. A.(1997年)《自然结构生物学》4卷,553 - 558页]一致,这些研究表明串联摆动碱基对是六氨合金属的良好结合位点。我们提出了一个模型,其中催化金属离子结合在串联摆动碱基对的大沟中,由核酶精确地定位在活性位点内,并在过渡态稳定正在形成的氧阴离子。我们的结果可能对理解蛋白质合成的机制有重大意义[诺勒,H. F.,霍法思,V.,和齐姆尼亚克,L.(1992年)《科学》256卷,1416 - 1419页]。