Gross B, Kostant B, Ramond P, Sternberg S
Mathematics Department, Harvard University, Cambridge, MA 02138, USA.
Proc Natl Acad Sci U S A. 1998 Jul 21;95(15):8441-2. doi: 10.1073/pnas.95.15.8441.
Let B be a reductive Lie subalgebra of a semi-simple Lie algebra F of the same rank both over the complex numbers. To each finite dimensional irreducible representation Vlambda of F we assign a multiplet of irreducible representations of B with m elements in each multiplet, where m is the index of the Weyl group of B in the Weyl group of F. We obtain a generalization of the Weyl character formula; our formula gives the character of Vlambda as a quotient whose numerator is an alternating sum of the characters in the multiplet associated to Vlambda and whose denominator is an alternating sum of the characters of the multiplet associated to the trivial representation of F.
设(B)是复系数域上与半单李代数(F)具有相同秩的约化李子代数。对于(F)的每个有限维不可约表示(V_{\lambda}),我们为其分配一个(B)的不可约表示的多重集,每个多重集中有(m)个元素,其中(m)是(B)的外尔群在(F)的外尔群中的指标。我们得到了外尔特征公式的一个推广;我们的公式将(V_{\lambda})的特征表示为一个商,其分子是与(V_{\lambda})相关联的多重集中特征的交错和,分母是与(F)的平凡表示相关联的多重集中特征的交错和。