Suppr超能文献

免疫组织化学技术研究原位乳腺癌的生物学特征。

Biological profile of in situ breast cancer investigated by immunohistochemical technique.

作者信息

Albonico G, Querzoli P, Ferretti S, Rinaldi R, Nenci I

机构信息

Department of Experimental and Diagnostic Medicine, Ferrara University, Italy.

出版信息

Cancer Detect Prev. 1998;22(4):313-8. doi: 10.1046/j.1525-1500.1998.cdoa41.x.

Abstract

In 74 in situ breast cancers an immunohistochemical study for estrogen (ER) and progesterone (PR) receptors, proliferation index (PI), and c-erbB-2, p53, and bcl-2 overexpression was performed. Cases were categorized as ductal carcinoma in situ (DCIS) comedo: 24.3% of cases; DCIS non comedo: 27% of cases; DCIS cribriform: 5.4% of cases; lobular carcinoma in situ (LCIS): 16.3% of cases; mixed carcinoma in situ: 27% of cases. Quantitation of immunohistochemical results was obtained with an image analysis computerized system (CAS 200). The cutoff values used were: 10% of positive area for ER, PR, NEU, and bcl-2; 5% of positive area for p53; 13% of PI for proliferative activity. DCIS cribriform and LCIS displayed a higher positivity for ER (92.6 and 93.8% of cases); DCIS cribriform and DCIS non comedo a higher for PR (89 and 75.3%); DCIS comedo presented the highest values for PI (65.4%), NEU (72.8%), and p53 expression (37.3%). All DCIS cribriform and DCIS non comedo and 99.6% of LCIS expressed bcl-2. The results underscore the importance of biological characterization of breast carcinoma in situ with the aim to define lesions natural history.

摘要

对74例原位乳腺癌进行了雌激素(ER)和孕激素(PR)受体、增殖指数(PI)以及c-erbB-2、p53和bcl-2过表达的免疫组织化学研究。病例分类为粉刺型导管原位癌(DCIS):占病例的24.3%;非粉刺型DCIS:占病例的27%;筛状DCIS:占病例的5.4%;小叶原位癌(LCIS):占病例的16.3%;混合性原位癌:占病例的27%。使用图像分析计算机系统(CAS 200)获得免疫组织化学结果的定量数据。所采用的临界值为:ER、PR、NEU和bcl-2的阳性面积为10%;p53的阳性面积为5%;PI的增殖活性为13%。筛状DCIS和LCIS的ER阳性率较高(分别为92.6%和93.8%);筛状DCIS和非粉刺型DCIS的PR阳性率较高(分别为89%和75.3%);粉刺型DCIS的PI(65.4%)、NEU(72.8%)和p53表达(37.3%)值最高。所有筛状DCIS和非粉刺型DCIS以及99.6%的LCIS均表达bcl-2。结果强调了原位乳腺癌生物学特征的重要性,目的是确定病变的自然史。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验