Dimroth P, Schink B
Mikrobiologisches Institut, Eidgenössische Technische Hochschule, ETH-Zentrum, Schmelzbergstr. 7, CH-8092 Zürich, Switzerland.
Arch Microbiol. 1998 Aug;170(2):69-77. doi: 10.1007/s002030050616.
Decarboxylation of dicarboxylic acids (oxalate, malonate, succinate, glutarate, and malate) can serve as the sole energy source for the growth of fermenting bacteria. Since the free energy change of a decarboxylation reaction is small (around -20 kJ per mol) and equivalent to only approximately one-third of the energy required for ATP synthesis from ADP and phosphate under physiological conditions, the decarboxylation energy cannot be conserved by substrate-level phosphorylation. It is either converted (in malonate, succinate, and glutarate fermentation) by membrane-bound primary decarboxylase sodium ion pumps into an electrochemical gradient of sodium ions across the membrane; or, alternatively, an electrochemical proton gradient can be established by the combined action of a soluble decarboxylase with a dicarboxylate/monocarboxylate antiporter (in oxalate and malate fermentation). The thus generated electrochemical Na+ or H+ gradients are then exploited for ATP synthesis by Na+- or H+-coupled F1F0 ATP synthases. This new type of energy conservation has been termed decarboxylation phosphorylation and is responsible entirely for ATP synthesis in several anaerobic bacteria.
二羧酸(草酸盐、丙二酸盐、琥珀酸盐、戊二酸盐和苹果酸盐)的脱羧作用可以作为发酵细菌生长的唯一能量来源。由于脱羧反应的自由能变化很小(每摩尔约-20 kJ),仅相当于生理条件下由ADP和磷酸盐合成ATP所需能量的约三分之一,因此脱羧能量不能通过底物水平磷酸化来保存。它要么(在丙二酸盐、琥珀酸盐和戊二酸盐发酵中)通过膜结合的初级脱羧酶钠离子泵转化为钠离子跨膜的电化学梯度;或者,通过可溶性脱羧酶与二羧酸/单羧酸反向转运体的联合作用(在草酸盐和苹果酸盐发酵中)建立电化学质子梯度。然后,由此产生的电化学Na+或H+梯度被Na+或H+偶联的F1F0 ATP合酶用于合成ATP。这种新型的能量保存方式被称为脱羧磷酸化,它完全负责几种厌氧细菌中的ATP合成。