Bioprocess Engineering, Wageningen University & Research, Post office box 16, Wageningen, 6700 AA, The Netherlands.
Microb Biotechnol. 2021 May;14(3):829-858. doi: 10.1111/1751-7915.13746. Epub 2021 Jan 13.
Microbial production of bulk chemicals and biofuels from carbohydrates competes with low-cost fossil-based production. To limit production costs, high titres, productivities and especially high yields are required. This necessitates metabolic networks involved in product formation to be redox-neutral and conserve metabolic energy to sustain growth and maintenance. Here, we review the mechanisms available to conserve energy and to prevent unnecessary energy expenditure. First, an overview of ATP production in existing sugar-based fermentation processes is presented. Substrate-level phosphorylation (SLP) and the involved kinase reactions are described. Based on the thermodynamics of these reactions, we explore whether other kinase-catalysed reactions can be applied for SLP. Generation of ion-motive force is another means to conserve metabolic energy. We provide examples how its generation is supported by carbon-carbon double bond reduction, decarboxylation and electron transfer between redox cofactors. In a wider perspective, the relationship between redox potential and energy conservation is discussed. We describe how the energy input required for coenzyme A (CoA) and CO binding can be reduced by applying CoA-transferases and transcarboxylases. The transport of sugars and fermentation products may require metabolic energy input, but alternative transport systems can be used to minimize this. Finally, we show that energy contained in glycosidic bonds and the phosphate-phosphate bond of pyrophosphate can be conserved. This review can be used as a reference to design energetically efficient microbial cell factories and enhance product yield.
从碳水化合物中生产大宗化学品和生物燃料的微生物与低成本的基于化石的生产竞争。为了限制生产成本,需要高浓度、高生产率,尤其是高得率。这就需要参与产物形成的代谢网络为氧化还原中性,并节约代谢能量以维持生长和维持。在这里,我们回顾了节约能源和防止不必要的能源消耗的可用机制。首先,介绍了现有基于糖的发酵工艺中 ATP 产生的概述。描述了底物水平磷酸化 (SLP) 和相关的激酶反应。基于这些反应的热力学,我们探讨了其他激酶催化的反应是否可以用于 SLP。产生离子动力也是节约代谢能量的另一种手段。我们提供了一些例子,说明如何通过碳-碳双键还原、脱羧和氧化还原辅因子之间的电子转移来支持其产生。从更广泛的角度来看,讨论了氧化还原电位与能量守恒之间的关系。我们描述了如何通过应用辅酶 A (CoA) 转移酶和转羧酶来降低 CoA 和 CO 结合所需的能量输入。糖和发酵产物的运输可能需要代谢能量输入,但可以使用替代运输系统将其最小化。最后,我们表明可以节约糖苷键和焦磷酸的磷酸-磷酸键中的能量。本综述可作为设计节能微生物细胞工厂和提高产物产率的参考。