Kros C J, Ruppersberg J P, Rüsch A
Department of Physiology, School of Medical Sciences, University of Bristol, UK.
Nature. 1998 Jul 16;394(6690):281-4. doi: 10.1038/28401.
Excitable cells use ion channels to tailor their biophysical properties to the functional demands made upon them. During development, these demands may alter considerably, often associated with a change in the cells' complement of ion channels. Here we present evidence for such a change in inner hair cells, the primary sensory receptors in the mammalian cochlea. In mice, responses to sound can first be recorded from the auditory nerve and observed behaviourally from 10-12 days after birth; these responses mature rapidly over the next 4 days. Before this time, mouse inner hair cells have slow voltage responses and fire spontaneous and evoked action potentials. During development of auditory responsiveness a large, fast potassium conductance is expressed, greatly speeding up the membrane time constant and preventing action potentials. This change in potassium channel expression turns the inner hair cell from a regenerative, spiking pacemaker into a high-frequency signal transducer.
可兴奋细胞利用离子通道来调整其生物物理特性,以适应它们所面临的功能需求。在发育过程中,这些需求可能会发生很大变化,通常与细胞离子通道的组成变化相关。在此,我们提供证据表明,哺乳动物耳蜗中的主要感觉受体——内毛细胞存在这样的变化。在小鼠中,出生后10至12天可首次从听神经记录到对声音的反应,并在行为上观察到这些反应;在接下来的4天里,这些反应迅速成熟。在此之前,小鼠内毛细胞具有缓慢的电压反应,并发放自发和诱发动作电位。在听觉反应性发育过程中,会表达一种大的、快速的钾电导,极大地加快了膜时间常数并阻止动作电位。钾通道表达的这种变化将内毛细胞从一个具有再生性、发放动作电位的起搏器转变为一个高频信号转换器。