Aravind L, Koonin E V
Department of Biology, Texas A&M University, College Station, TX 77843, USA.
Nucleic Acids Res. 1998 Aug 15;26(16):3746-52. doi: 10.1093/nar/26.16.3746.
Computer analysis of DNA polymerase protein sequences revealed previously unidentified conserved domains that belong to two distinct superfamilies of phosphoesterases. The alpha subunits of bacterial DNA polymerase III and two distinct family X DNA polymerases are shown to contain an N-terminal domain that defines a novel enzymatic superfamily, designated PHP, after polymerase and histidinol phosphatase. The predicted catalytic site of the PHP superfamily consists of four motifs containing conserved histidine residues that are likely to be involved in metal-dependent catalysis of phosphoester bond hydrolysis. The PHP domain is highly conserved in all bacterial polymerase III alpha subunits, but in proteobacteria and mycoplasmas, the conserved motifs are distorted, suggesting a loss of the enzymatic activity. Another conserved domain, found in the small subunits of archaeal DNA polymerase II and eukaryotic DNA polymerases alpha and delta, is shown to belong to the superfamily of calcineurin-like phospho-esterases, which unites a variety of phosphatases and nucleases. The conserved motifs required for phospho-esterase activity are intact in the archaeal DNA polymerase subunits, but are disrupted in their eukaryotic orthologs. A hypothesis is proposed that bacterial and archaeal replicative DNA polymerases possess intrinsic phosphatase activity that hydrolyzes the pyrophosphate released during nucleotide polymerization. As proposed previously, pyrophosphate hydrolysis may be necessary to drive the polymerization reaction forward. The phosphoesterase domains with disrupted catalytic motifs may assume an allosteric, regulatory function and/or bind other subunits of DNA polymerase holoenzymes. In these cases, the pyrophosphate may be hydrolyzed by a stand-alone phosphatase, and candidates for such a role were identified among bacterial PHP superfamily members.
对DNA聚合酶蛋白质序列的计算机分析揭示了以前未被识别的保守结构域,这些结构域属于磷酸酯酶的两个不同超家族。细菌DNA聚合酶III的α亚基以及两种不同的X家族DNA聚合酶显示含有一个N端结构域,该结构域定义了一个新的酶超家族,在聚合酶和组氨醇磷酸酶之后命名为PHP。PHP超家族的预测催化位点由四个含有保守组氨酸残基的基序组成,这些残基可能参与磷酸酯键水解的金属依赖性催化。PHP结构域在所有细菌聚合酶IIIα亚基中高度保守,但在变形菌和支原体中,保守基序发生扭曲,表明酶活性丧失。在古细菌DNA聚合酶II的小亚基以及真核DNA聚合酶α和δ中发现的另一个保守结构域,显示属于钙调神经磷酸酶样磷酸酯酶超家族,该超家族包含多种磷酸酶和核酸酶。磷酸酯酶活性所需的保守基序在古细菌DNA聚合酶亚基中是完整的,但在其真核直系同源物中被破坏。提出了一个假设,即细菌和古细菌复制性DNA聚合酶具有内在的磷酸酶活性,可水解核苷酸聚合过程中释放的焦磷酸。如先前提出的,焦磷酸水解可能是推动聚合反应向前进行所必需的。具有破坏催化基序的磷酸酯酶结构域可能具有变构调节功能和/或结合DNA聚合酶全酶的其他亚基。在这些情况下,焦磷酸可能由一种独立的磷酸酶水解,并且在细菌PHP超家族成员中鉴定出了可能起这种作用的候选者。