Suppr超能文献

分泌性融合和病毒融合可能与弯曲脂质双层之间的融合共享机制事件。

Secretory and viral fusion may share mechanistic events with fusion between curved lipid bilayers.

作者信息

Lee J, Lentz B R

机构信息

Department of Biochemistry and Biophysics, University of North Carolina, School of Medicine, Chapel Hill, NC 27599-7260, USA.

出版信息

Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9274-9. doi: 10.1073/pnas.95.16.9274.

Abstract

Activation energies for the individual steps of secretory and viral fusion are reported to be large [Oberhauser, A. F., Monck, J. R. & Fernandez, J. M. (1992) Biophys. J. 61, 800-809; Clague, M. J., Schoch, C., Zech, L. & Blumenthal, R. (1990) Biochemistry 29, 1303-1308]. Understanding the cause for these large activation energies is crucial to defining the mechanisms of these two types of biological membrane fusion. We showed recently that the fusion of protein-free model lipid bilayers mimics the sequence of steps observed during secretory and viral fusion, suggesting that these processes may involve common lipid, rather than protein, rearrangements. To test for this possibility, we determined the activation energies for the three steps that we were able to distinguish as contributing to the fusion of protein-free model lipid bilayers. Activation energies for lipid rearrangements associated with formation of the reversible first intermediate, with conversion of this to a semi-stable second intermediate, and with irreversible fusion pore formation were 37 kcal/mol, 27 kcal/mol, and 22 kcal/mol, respectively. The first and last of these were comparable to the activation energies observed for membrane lipid exchange (42 kcal/mol) during viral fusion and for the rate of fusion pore opening during secretory granule release (23 kcal/mol). This striking similarity suggests strongly that the basic molecular processes involved in secretory and viral fusion involve a set of lipid molecule rearrangements that also are involved in model membrane fusion.

摘要

据报道,分泌性融合和病毒融合各个步骤的活化能都很高[奥伯豪泽,A. F.,蒙克,J. R. & 费尔南德斯,J. M.(1992年)《生物物理学杂志》61卷,800 - 809页;克拉格,M. J.,朔赫,C.,泽赫,L. & 布卢门撒尔,R.(1990年)《生物化学》29卷,1303 - 1308页]。了解这些高活化能的成因对于界定这两种生物膜融合机制至关重要。我们最近表明,无蛋白模型脂质双层的融合模拟了分泌性融合和病毒融合过程中观察到的步骤顺序,这表明这些过程可能涉及共同的脂质重排,而非蛋白质重排。为了验证这种可能性,我们确定了我们能够区分的、对无蛋白模型脂质双层融合有贡献的三个步骤的活化能。与可逆的第一个中间体形成、该中间体转化为半稳定的第二个中间体以及不可逆的融合孔形成相关的脂质重排的活化能分别为37千卡/摩尔、27千卡/摩尔和22千卡/摩尔。其中第一个和最后一个与病毒融合过程中膜脂质交换的活化能(42千卡/摩尔)以及分泌颗粒释放过程中融合孔开放速率(23千卡/摩尔)相当。这种显著的相似性强烈表明,分泌性融合和病毒融合所涉及的基本分子过程涉及一组脂质分子重排,这些重排也参与了模型膜融合。

相似文献

3
The exocytotic fusion pore and neurotransmitter release.胞吐融合孔与神经递质释放
Neuron. 1994 Apr;12(4):707-16. doi: 10.1016/0896-6273(94)90325-5.
6
Mechanics of membrane fusion.膜融合机制。
Nat Struct Mol Biol. 2008 Jul;15(7):675-83. doi: 10.1038/nsmb.1455.

引用本文的文献

2
The beginning and the end of SNARE-induced membrane fusion.SNARE 诱导的膜融合的开始和结束。
FEBS Open Bio. 2022 Nov;12(11):1958-1979. doi: 10.1002/2211-5463.13447. Epub 2022 Jun 28.
4
Low energy cost for optimal speed and control of membrane fusion.实现膜融合最佳速度和控制所需的低能量成本。
Proc Natl Acad Sci U S A. 2017 Feb 7;114(6):1238-1241. doi: 10.1073/pnas.1621309114. Epub 2017 Jan 23.
10
Molecular and cellular aspects of rhabdovirus entry.小核糖核酸病毒进入的分子和细胞方面。
Viruses. 2012 Jan;4(1):117-39. doi: 10.3390/v4010117. Epub 2012 Jan 18.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验