Suppr超能文献

片层/反相转变的改良茎干机制及其对膜融合的影响。

The modified stalk mechanism of lamellar/inverted phase transitions and its implications for membrane fusion.

作者信息

Siegel D P

机构信息

Chemistry Department, The Ohio State University, Columbus, Ohio 43210 USA.

出版信息

Biophys J. 1999 Jan;76(1 Pt 1):291-313. doi: 10.1016/S0006-3495(99)77197-3.

Abstract

A model of the energetics of lipid assemblies (Siegel. 1993. Biophys. J. 65:2124-2140) is used to predict the relative free energy of intermediates in the transitions between lamellar (Lalpha) inverted hexagonal (HII), and inverted cubic (QII) phases. The model was previously used to generate the modified stalk theory of membrane fusion. The modified stalk theory proposes that the lowest energy structures to form between apposed membranes are the stalk and the transmonolayer contact (TMC), respectively. The first steps in the Lalpha/HII and Lalpha/QII phase transitions are also intermembrane events: bilayers of the Lalpha phase must interact to form new topologies during these transitions. Hence the intermediates in these phase transitions should be similar to the intermediates in the modified stalk mechanism of fusion. The calculations here show that stalks and TMCs can mediate transitions between the Lalpha, QII, and HII phases. These predictions are supported by studies of the mechanism of these transitions via time-resolved cryoelectron microscopy (. Biophys. J. 66:402-414; Siegel and Epand. 1997. Biophys. J. 73:3089-3111), whereas the predictions of previously proposed transition mechanisms are not. The model also predicts that QII phases should be thermodynamically stable in all thermotropic lipid systems. The profound hysteresis in Lalpha/QII transitions in some phospholipid systems may be due to lipid composition-dependent effects other than differences in lipid spontaneous curvature. The relevant composition-dependent properties are the Gaussian curvature modulus and the membrane rupture tension, which could change the stability of TMCs. TMC stability also influences the rate of membrane fusion of apposed bilayers, so these two properties may also affect the fusion rate in model membrane and biomembrane systems. One way proteins catalyze membrane fusion may be by making local changes in these lipid properties. Finally, although the model identifies stalks and TMCs as the lowest energy intermembrane intermediates in fusion and lamellar/inverted phase transitions, the stalk and TMC energies calculated by the present model are still large. This suggests that there are deficiencies in the current model for intermediates or intermediate energies. The possible nature of these deficiencies is discussed.

摘要

脂质组装体能量学模型(西格尔,1993年,《生物物理杂志》65卷:2124 - 2140页)被用于预测层状(Lα)、反相六角形(HII)和反相立方(QII)相之间转变过程中中间体的相对自由能。该模型先前被用于构建膜融合的改进茎干理论。改进茎干理论提出,相对的膜之间形成的能量最低的结构分别是茎干和跨单层接触(TMC)。Lα/HII和Lα/QII相转变的第一步也是膜间事件:在这些转变过程中,Lα相的双层膜必须相互作用以形成新的拓扑结构。因此,这些相转变中的中间体应与融合的改进茎干机制中的中间体相似。此处的计算表明,茎干和TMC可介导Lα、QII和HII相之间的转变。这些预测得到了通过时间分辨冷冻电子显微镜对这些转变机制的研究的支持(《生物物理杂志》66卷:402 - 414页;西格尔和埃潘德,1997年,《生物物理杂志》73卷:3089 - 3111页),而先前提出的转变机制的预测则不然。该模型还预测,QII相在所有热致液晶脂质体系中应是热力学稳定的。某些磷脂体系中Lα/QII转变中存在的显著滞后现象可能是由于除脂质自发曲率差异之外的脂质组成依赖性效应。相关的组成依赖性性质是高斯曲率模量和膜破裂张力,它们可能会改变TMC的稳定性。TMC稳定性也会影响相对双层膜的膜融合速率,因此这两个性质也可能会影响模型膜和生物膜体系中的融合速率。蛋白质催化膜融合的一种方式可能是使这些脂质性质发生局部变化。最后,尽管该模型将茎干和TMC确定为融合以及层状/反相转变中能量最低的膜间中间体,但本模型计算出的茎干和TMC能量仍然很大。这表明当前的中间体或中间体能量模型存在缺陷。讨论了这些缺陷可能的性质。

相似文献

4
The Gaussian curvature elastic energy of intermediates in membrane fusion.膜融合中间体的高斯曲率弹性能量。
Biophys J. 2008 Dec;95(11):5200-15. doi: 10.1529/biophysj.108.140152. Epub 2008 Sep 19.
8
Membrane fusion: stalk model revisited.膜融合:柄模型再探讨
Biophys J. 2002 Feb;82(2):693-712. doi: 10.1016/S0006-3495(02)75432-5.

引用本文的文献

5
Mechanism of Membrane Fusion: Interplay of Lipid and Peptide.膜融合机制:脂质与肽的相互作用。
J Membr Biol. 2022 Jun;255(2-3):211-224. doi: 10.1007/s00232-022-00233-1. Epub 2022 Apr 18.
8
Fast bilayer-micelle fusion mediated by hydrophobic dipeptides.疏水二肽介导的快速双层胶束融合。
Biophys J. 2021 Jun 1;120(11):2330-2342. doi: 10.1016/j.bpj.2021.04.012. Epub 2021 Apr 19.
10
Membrane Vesicle Production as a Bacterial Defense Against Stress.作为细菌应激防御机制的膜泡产生
Front Microbiol. 2020 Dec 9;11:600221. doi: 10.3389/fmicb.2020.600221. eCollection 2020.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验