Compiani M, Fariselli P, Martelli P L, Casadio R
Dipartimento di Scienze Chimiche, Università di Camerino, Via S. Agostino 1, 62032 Camerino MC, Italy.
Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9290-4. doi: 10.1073/pnas.95.16.9290.
The analysis of the information flow in a feed-forward neural network suggests that the output of the network can be used to compute a structural entropy for the sequence-to-secondary structure mapping. On this basis, we formulate a minimum entropy criterion for the identification of minimally frustrated traits with helical conformation that correspond to initiation sites of protein folding. The entropy of protein segments can be viewed as a nucleation propensity that is useful to characterize putative regions where folding is likely to be initiated with the formation of stretches of alpha-helices under the predominant influence of local interactions. Our procedure is successfully tested in the search for initiation sites of protein folding for which independent experimental and computational evidence exists. Our results lend support to the view that folding is a hierarchical event in which, in harmony with the minimal frustration principle, the final conformation preserves structural modules formed in the early stages of the process.
对前馈神经网络中信息流的分析表明,网络的输出可用于计算序列到二级结构映射的结构熵。在此基础上,我们制定了一个最小熵标准,用于识别与蛋白质折叠起始位点相对应的具有螺旋构象的最小受挫特征。蛋白质片段的熵可被视为一种成核倾向,有助于表征在局部相互作用的主要影响下,可能通过形成α-螺旋片段而开始折叠的假定区域。我们的方法在寻找存在独立实验和计算证据的蛋白质折叠起始位点时得到了成功测试。我们的结果支持了这样一种观点,即折叠是一个分层事件,在这个过程中,与最小受挫原则相一致,最终构象保留了在过程早期形成的结构模块。