Suppr超能文献

Differential regulation of ROMK expression in kidney cortex and medulla by aldosterone and potassium.

作者信息

Wald H, Garty H, Palmer L G, Popovtzer M M

机构信息

Nephrology and Hypertension Services, Hadassah University Hospital, Jerusalem 91120, Israel.

出版信息

Am J Physiol. 1998 Aug;275(2):F239-45. doi: 10.1152/ajprenal.1998.275.2.F239.

Abstract

This study explores the role of K+ and aldosterone in the regulation of mRNA of the ATP-sensitive, inwardly rectifying K+ channel, ROMK, in the rat kidney. K+ deficiency downregulated ROMK mRNA in cortex to 47.1 +/- 5.1% of control (P < 0.001) and in medulla to 56.1 +/- 3. 4% (P < 0.001). High-K+ diet slightly increased ROMK mRNA in medulla to 122 +/- 9% (P < 0.05 vs. control). Adrenalectomy (Adx) downregulated cortical ROMK mRNA to 30.7 +/- 6.8% (P < 0.001 vs. control), and increased it in medulla to 138 +/- 12.9% (P < 0.02 vs. control). In Adx rats, K+ deficiency decreased ROMK mRNA in cortex and medulla similar to intact rats. The alpha1- and beta1-Na-K-ATPase subunits were regulated in parallel to that of ROMK. In medulla, ROMK mRNA correlated with serum K+ concentration at R = 0.9406 (n = 6, P < 0.001) and alpha1-Na-K-ATPase mRNA at R = 0.9756 (n = 6, P < 0.001). ROMK2 also correlated with serum K+ concentration (R = 0.895; n = 6, P < 0.01). These results show that cortical ROMK expression is regulated by aldosterone and K+, whereas the medullary ROMK mRNA is regulated by serum K+.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验