Suppr超能文献

通过二维和三维超声成像测量前列腺体积时观察者内及观察者间的变异性和可靠性。

Intra- and inter-observer variability and reliability of prostate volume measurement via two-dimensional and three-dimensional ultrasound imaging.

作者信息

Tong S, Cardinal H N, McLoughlin R F, Downey D B, Fenster A

机构信息

Imaging Research Laboratories, J. P. Robarts Research Institute, London, Ontario, Canada.

出版信息

Ultrasound Med Biol. 1998 Jun;24(5):673-81. doi: 10.1016/s0301-5629(98)00039-8.

Abstract

We describe the results of a study to evaluate the intra- and inter-observer variability and reliability of prostate volume measurements made from transrectal ultrasound (TRUS) images, using either the (optimal) height-width-length (HWL) method (V = pi/6 HWL) with two-dimensional (2D) TRUS images (obtained as cross-sections of three-dimensional [3D] TRUS images) or manual planimetry of 3D TRUS images (the 3D US method). In this study, eight observers measured 15 prostate images, twice via each method, and an analysis of variance (ANOVA) was performed. This analysis shows that, with the 3D US method, intra-observer prostate volume estimates have 5.1% variability and 99% reliability, and inter-observer estimates have 11.4% variability and 96% reliability. With the HWL method, intra-observer estimates have 15.5% variability and 93% reliability, and inter-observer estimates have 21.9% variability and 87% reliability. Thus, in vivo prostate volume estimates from manual planimetry of 3D TRUS images have much lower variability and higher reliability than HWL estimates from 2D TRUS images.

摘要

我们描述了一项研究的结果,该研究旨在评估使用(最佳)高-宽-长(HWL)方法(V = π/6 HWL)结合二维(2D)经直肠超声(TRUS)图像(作为三维[3D]TRUS图像的横截面获得)或3D TRUS图像的手动平面测量法(3D US方法),从TRUS图像测量前列腺体积时观察者内部和观察者之间的变异性及可靠性。在本研究中,八名观察者通过每种方法对15幅前列腺图像各测量两次,并进行了方差分析(ANOVA)。该分析表明,采用3D US方法时,观察者内部前列腺体积估计的变异性为5.1%,可靠性为99%,观察者之间的估计变异性为11.4%,可靠性为96%。采用HWL方法时,观察者内部估计的变异性为15.5%,可靠性为93%,观察者之间的估计变异性为21.9%,可靠性为87%。因此,与从2D TRUS图像的HWL估计相比,通过3D TRUS图像的手动平面测量法进行的体内前列腺体积估计具有更低的变异性和更高的可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验