Suppr超能文献

一种新型机器学习自动勾画工具用于放射治疗计划的临床评估。

Clinical assessment of a novel machine-learning automated contouring tool for radiotherapy planning.

机构信息

Icon Cancer Centre Concord, Rusty Priest Building, Concord Repatriation Hospital, Concord NSW, Australia.

ICON Core Office, South Brisbane QLD, Australia.

出版信息

J Appl Clin Med Phys. 2023 Jul;24(7):e13949. doi: 10.1002/acm2.13949. Epub 2023 Mar 4.

Abstract

Contouring has become an increasingly important aspect of radiotherapy due to inverse planning. Several studies have suggested that the clinical implementation of automated contouring tools can reduce inter-observer variation while increasing contouring efficiency, thereby improving the quality of radiotherapy treatment and reducing the time between simulation and treatment. In this study, a novel, commercial automated contouring tool based on machine learning, the AI-Rad Companion Organs RT™ (AI-Rad) software (Version VA31) (Siemens Healthineers, Munich, Germany), was assessed against both manually delineated contours and another commercially available automated contouring software, Varian Smart Segmentation™ (SS) (Version 16.0) (Varian, Palo Alto, CA, United States). The quality of contours generated by AI-Rad in Head and Neck (H&N), Thorax, Breast, Male Pelvis (Pelvis_M), and Female Pelvis (Pevis_F) anatomical areas was evaluated both quantitatively and qualitatively using several metrics. A timing analysis was subsequently performed to explore potential time savings achieved by AI-Rad. Results showed that most automated contours generated by AI-Rad were not only clinically acceptable and required minimal editing, but also superior in quality to contours generated by SS in multiple structures. In addition, timing analysis favored AI-Rad over manual contouring, indicating the largest time saving (753s per patient) in the Thorax area. AI-Rad was concluded to be a promising automated contouring solution that generated clinically acceptable contours and achieved time savings, thereby greatly benefiting the radiotherapy process.

摘要

由于逆向计划,轮廓勾画已成为放射治疗中越来越重要的方面。有几项研究表明,自动化轮廓勾画工具的临床应用可以减少观察者间的变异,同时提高轮廓勾画效率,从而提高放射治疗的质量并减少模拟和治疗之间的时间间隔。在这项研究中,评估了一种新的基于机器学习的商业化自动化轮廓勾画工具,即 AI-Rad Companion Organs RT™(AI-Rad)软件(版本 VA31)(西门子医疗,慕尼黑,德国),与手动勾画的轮廓以及另一种商业化的自动化轮廓勾画软件,Varian Smart Segmentation™(SS)(版本 16.0)(瓦里安,帕洛阿尔托,加利福尼亚州,美国)进行了对比。使用多种指标对 AI-Rad 在头颈部(H&N)、胸部、乳房、男性骨盆(Pelvis_M)和女性骨盆(Pevis_F)解剖区域生成的轮廓的质量进行了定量和定性评估。随后进行了时间分析,以探讨 AI-Rad 可能实现的潜在时间节省。结果表明,AI-Rad 生成的大多数自动化轮廓不仅在临床上是可接受的,且仅需要最小的编辑,而且在多个结构中的 SS 生成的轮廓质量更高。此外,时间分析倾向于 AI-Rad 而不是手动轮廓勾画,表明在胸部区域的节省时间最大(每个患者 753 秒)。AI-Rad 被认为是一种很有前途的自动化轮廓勾画解决方案,它生成了临床可接受的轮廓并实现了时间节省,从而极大地有益于放射治疗过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/42e1/10338747/97e2fe59c998/ACM2-24-e13949-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验