Suppr超能文献

跳跃步态的生物力学:第三种运动模式?

The biomechanics of skipping gaits: a third locomotion paradigm?

作者信息

Minetti A E

机构信息

Department of Physiology, Istituto Tecnologie Biomediche Avanzate C.N.R., Consiglio Nazionale delle Ricerche, Segrate, MI, Italy.

出版信息

Proc Biol Sci. 1998 Jul 7;265(1402):1227-35. doi: 10.1098/rspb.1998.0424.

Abstract

Skipping, a gait children display when they are about four- to five-years-old, is revealed to be more than a behavioural peculiarity. By means of metabolic and biomechanical measurements at several speeds, the relevance of skipping is shown to extend from links between bipedal and quadrupedal locomotion (namely galloping) to understanding why it could be a gait of choice in low-gravity conditions, and to some aspects of locomotion evolution (ground reaction forces of skipping seem to originate from pushing the walking gait to unnaturally high speeds). When the time-courses of mechanical energy and the horizontal ground reaction force are considered, a different locomotion paradigm emerges, enabling us to separate, among the bouncing gaits, the trot from the gallop (quadrupeds) and running from skipping (bipeds). The simultaneous use of pendulum-like and elastic mechanisms in skipping gaits, as shown by the energy curve analysis, helps us to understand the low cost of transport of galloping quadrupeds.

摘要

跳跃,是孩子们在大约四五岁时展现出的一种步态,它远不止是一种行为特性。通过在几种速度下进行的代谢和生物力学测量,跳跃的相关性体现在从双足和四足运动(即疾驰)之间的联系,到理解为何在低重力条件下它可能是一种首选步态,以及到运动进化的某些方面(跳跃的地面反作用力似乎源于将步行步态推至不自然的高速)。当考虑机械能和水平地面反作用力的时间进程时,一种不同的运动范式出现了,使我们能够在弹跳步态中区分四足动物的小跑和疾驰,以及双足动物的跑步和跳跃。如能量曲线分析所示,在跳跃步态中同时使用类似钟摆和弹性的机制,有助于我们理解疾驰四足动物低能量消耗的原因。

相似文献

1
The biomechanics of skipping gaits: a third locomotion paradigm?
Proc Biol Sci. 1998 Jul 7;265(1402):1227-35. doi: 10.1098/rspb.1998.0424.
2
Skipping vs. running as the bipedal gait of choice in hypogravity.
J Appl Physiol (1985). 2015 Jul 1;119(1):93-100. doi: 10.1152/japplphysiol.01021.2014. Epub 2015 Apr 30.
3
Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
J Exp Zool A Comp Exp Biol. 2006 Nov 1;305(11):899-911. doi: 10.1002/jez.a.334.
4
Biomechanics of human bipedal gallop: asymmetry dictates leg function.
J Exp Biol. 2013 Apr 1;216(Pt 7):1338-49. doi: 10.1242/jeb.074690. Epub 2012 Dec 13.
7
Gait mechanics of lemurid primates on terrestrial and arboreal substrates.
J Hum Evol. 2005 Feb;48(2):199-217. doi: 10.1016/j.jhevol.2004.11.004. Epub 2005 Jan 12.
8
A comparative collision-based analysis of human gait.
Proc Biol Sci. 2013 Oct 2;280(1771):20131779. doi: 10.1098/rspb.2013.1779. Print 2013 Nov 22.
10
Hopping locomotion at different gravity: metabolism and mechanics in humans.
J Appl Physiol (1985). 2016 May 15;120(10):1223-9. doi: 10.1152/japplphysiol.00839.2015. Epub 2015 Dec 3.

引用本文的文献

1
Horizontal running inside circular walls of Moon settlements: a comprehensive countermeasure for low-gravity deconditioning?
R Soc Open Sci. 2024 May 1;11(5):231906. doi: 10.1098/rsos.231906. eCollection 2024 May.
2
Skipping without and with hurdles in bipedal macaque: global mechanics.
J Exp Biol. 2024 Apr 1;227(7). doi: 10.1242/jeb.246675. Epub 2024 Mar 28.
4
How about running on Mars? Influence of sensorimotor coherence on running and spatial perception in simulated reduced gravity.
Front Physiol. 2023 Jul 31;14:1201253. doi: 10.3389/fphys.2023.1201253. eCollection 2023.
5
Movement in low gravity environments (MoLo) programme-The MoLo-L.O.O.P. study protocol.
PLoS One. 2022 Nov 23;17(11):e0278051. doi: 10.1371/journal.pone.0278051. eCollection 2022.
6
Reliability and validity analysis of personality assessment model based on gait video.
Front Behav Neurosci. 2022 Aug 2;16:901568. doi: 10.3389/fnbeh.2022.901568. eCollection 2022.
8
Common motor patterns of asymmetrical and symmetrical bipedal gaits.
PeerJ. 2021 Aug 16;9:e11970. doi: 10.7717/peerj.11970. eCollection 2021.
9
Linking Gait Dynamics to Mechanical Cost of Legged Locomotion.
Front Robot AI. 2018 Oct 17;5:111. doi: 10.3389/frobt.2018.00111. eCollection 2018.
10
Emergence of Different Gaits in Infancy: Relationship Between Developing Neural Circuitries and Changing Biomechanics.
Front Bioeng Biotechnol. 2020 May 19;8:473. doi: 10.3389/fbioe.2020.00473. eCollection 2020.

本文引用的文献

1
HUMAN LOCOMOTION IN SUBGRAVITY.
Aerosp Med. 1964 Dec;35:1140-6.
2
The anthropometry of the manual work space for the seated subject.
Am J Phys Anthropol. 1959 Dec;17(4):289-317. doi: 10.1002/ajpa.1330170405.
3
Inertial properties of Dutch Warmblood horses.
J Biomech. 1997 Jun;30(6):653-8. doi: 10.1016/s0021-9290(97)00005-5.
4
Mechanical determinants of gradient walking energetics in man.
J Physiol. 1993 Dec;472:725-35. doi: 10.1113/jphysiol.1993.sp019969.
5
Mechanical determinants of the minimum energy cost of gradient running in humans.
J Exp Biol. 1994 Oct;195:211-25. doi: 10.1242/jeb.195.1.211.
6
Fourier analysis of forces exerted in walking and running.
J Biomech. 1980;13(4):383-90. doi: 10.1016/0021-9290(80)90019-6.
7
Ground reaction forces at different speeds of human walking and running.
Acta Physiol Scand. 1989 Jun;136(2):217-27. doi: 10.1111/j.1748-1716.1989.tb08655.x.
8
The spring-mass model for running and hopping.
J Biomech. 1989;22(11-12):1217-27. doi: 10.1016/0021-9290(89)90224-8.
9
A model of bipedal locomotion on compliant legs.
Philos Trans R Soc Lond B Biol Sci. 1992 Oct 29;338(1284):189-98. doi: 10.1098/rstb.1992.0138.
10
The sources of external work in level walking and running.
J Physiol. 1976 Nov;262(3):639-57. doi: 10.1113/jphysiol.1976.sp011613.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验