Suppr超能文献

基于步态视频的人格评估模型的信效度分析

Reliability and validity analysis of personality assessment model based on gait video.

作者信息

Wen Yeye, Li Baobin, Chen Deyuan, Zhu Tingshao

机构信息

School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China.

Institute of Psychology, Chinese Academy of Sciences, Beijing, China.

出版信息

Front Behav Neurosci. 2022 Aug 2;16:901568. doi: 10.3389/fnbeh.2022.901568. eCollection 2022.

Abstract

Personality affects an individual's academic achievements, occupational tendencies, marriage quality and physical health, so more convenient and objective personality assessment methods are needed. Gait is a natural, stable, and easy-to-observe body movement that is closely related to personality. The purpose of this paper is to propose a personality assessment model based on gait video and evaluate the reliability and validity of the multidimensional model. This study recruited 152 participants and used cameras to record their gait videos. Each participant completed a 44-item Big Five Inventory (BFI-44) assessment. We constructed diverse static and dynamic time-frequency features based on gait skeleton coordinates, interframe differences, distances between joints, angles between joints, and wavelet decomposition coefficient arrays. We established multidimensional personality trait assessment models through machine learning algorithms and evaluated the criterion validity, split-half reliability, convergent validity, and discriminant validity of these models. The results showed that the reliability and validity of the Gaussian process regression (GPR) and linear regression (LR) models were best. The mean values of their criterion validity were 0.478 and 0.508, respectively, and the mean values of their split-half reliability were all greater than 0.8. In the formed multitrait-multimethod matrix, these methods also had higher convergent and discriminative validity. The proposed approach shows that gait video can be effectively used to evaluate personality traits, providing a new idea for the formation of convenient and non-invasive personality assessment methods.

摘要

人格会影响个体的学业成绩、职业倾向、婚姻质量和身体健康,因此需要更便捷、客观的人格评估方法。步态是一种自然、稳定且易于观察的身体运动,与人格密切相关。本文旨在提出一种基于步态视频的人格评估模型,并评估该多维模型的可靠性和有效性。本研究招募了152名参与者,并用摄像头记录他们的步态视频。每位参与者完成了一项包含44个条目的大五人格量表(BFI - 44)评估。我们基于步态骨架坐标、帧间差异、关节间距离、关节间角度以及小波分解系数阵列构建了多样的静态和动态时频特征。我们通过机器学习算法建立了多维人格特质评估模型,并评估了这些模型的效标效度、分半信度、聚合效度和区分效度。结果表明,高斯过程回归(GPR)模型和线性回归(LR)模型的可靠性和有效性最佳。它们的效标效度均值分别为0.478和0.508,分半信度均值均大于0.8。在形成的多特质 - 多方法矩阵中,这些方法也具有较高的聚合效度和区分效度。所提出的方法表明,步态视频可有效用于评估人格特质,为形成便捷、无创的人格评估方法提供了新思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10b4/9380895/8bd482e93a35/fnbeh-16-901568-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验