Trajanoski Z, Regittnig W, Wach P
Department of Biophysics, Graz University of Technology, Austria.
Comput Methods Programs Biomed. 1998 May;56(2):133-9. doi: 10.1016/s0169-2607(98)00020-0.
A novel strategy for closed-loop control of glucose using subcutaneous (s.c.) tissue glucose measurement and s.c. infusion of monomeric insulin analogues was developed and evaluated in a simulation study. The proposed control strategy is an amalgamation of a neural network and nonlinear model predictive control (NPC) technique. A radial basis function neural network was used for off-line system identification of Nonlinear Auto Regressive model with eXogenous inputs (NARX) model of the glucoregulatory system. The explicit NARX model obtained from the off-line identification procedure was then used to predict the effects of future control actions. Numerical studies were carried out using a comprehensive model of glucose regulation. The system identification procedure enabled construction of a parsimonious network from the stimulated data, and consequently, design of a controller using multiple-step-ahead predictions of the previously identified model. According to the simulation results, stable control is achievable in the presence of large noise levels and for unknown or variable physiological or technical time delays. In conclusion, the simulation results suggest that closed-loop control of glucose will be achievable using s.c. glucose measurement and s.c. insulin administration. However, the control limitations due to the s.c. insulin administration makes additional action of the patient at meal time necessary.
一种利用皮下组织葡萄糖测量和皮下注射单体胰岛素类似物进行葡萄糖闭环控制的新策略在一项模拟研究中得以开发和评估。所提出的控制策略是神经网络和非线性模型预测控制(NPC)技术的融合。径向基函数神经网络用于对糖调节系统的具有外部输入的非线性自回归模型(NARX)进行离线系统辨识。然后,将从离线辨识过程中获得的显式NARX模型用于预测未来控制动作的效果。使用一个全面的葡萄糖调节模型进行了数值研究。系统辨识过程能够根据激励数据构建一个简约的网络,进而利用先前辨识模型的多步超前预测来设计控制器。根据模拟结果,在存在高噪声水平以及未知或可变的生理或技术时间延迟的情况下,能够实现稳定控制。总之,模拟结果表明,利用皮下葡萄糖测量和皮下胰岛素给药可实现葡萄糖的闭环控制。然而,由于皮下胰岛素给药存在控制局限性,患者在进餐时间需要采取额外行动。