Jourd'heuil D, Mills L, Miles A M, Grisham M B
Department of Molecular and Cellular Physiology, Louisiana State University Medical Center, Shreveport 71130, USA.
Nitric Oxide. 1998;2(1):37-44. doi: 10.1006/niox.1998.0167.
Hemoglobin or myoglobin-catalyzed oxidation reactions have been suggested to initiate and/or exacerbate tissue injury associated with a variety of pathological conditions including post-ischemic tissue injury, hemorrhagic disorders, and chronic inflammation. In the present study, we investigated what effect different fluxes of nitric oxide (NO) have on hemoprotein-catalyzed oxidation reactions in vitro. The hypoxanthine/xanthine oxidase system was used to generate both O2- and H2O2, whereas the spontaneous decomposition of the spermine/NO adduct was used to generate NO at a known and constant rate. We assessed the ability of myoglobin (Mb) or hemoglobin (Hb) to oxidize dihydrorhodamine (DHR) to rhodamine (RH) in the presence of O2-/H2O2 and/or NO. In the presence of a constant flux of O2- and H2O2 (1 nmol/min each), 500 nM MetMb (Fe3+) stimulated DHR oxidation from normally undetectable levels to approximately 35 microM. This oxidation reaction was inhibited by catalase but not SOD, suggesting the formation of the ferryl-hemoprotein adduct (Fe4+). Equimolar fluxes of O2-, H2O2, and NO increased further DHR oxidation to approximately 50 microM. The 15 microM increase in DHR oxidation was independent of heme concentration and was inhibited by SOD. This suggested that equal fluxes of O2- and NO interact to yield a potent oxidant such as peroxinitrite (OONO-) which together with Mb-Fe4+ oxidizes DHR. Further increases in NO fluxes significantly inhibited DHR oxidation (80%) via the NO-dependent inhibition of Mb-Fe4+ formation. Additional studies using methemoglobin (Hb-Fe3+)-catalyzed oxidative reactions yielded virtually identical results. We conclude that in the presence of a hemoprotein such as myoglobin or hemoglobin, NO may promote or inhibit oxidation reactions depending upon the relative fluxes of O2-, H2O2, and NO.
血红蛋白或肌红蛋白催化的氧化反应被认为会引发和/或加剧与多种病理状况相关的组织损伤,这些病理状况包括缺血后组织损伤、出血性疾病和慢性炎症。在本研究中,我们调查了不同通量的一氧化氮(NO)在体外对血红素蛋白催化的氧化反应有何影响。次黄嘌呤/黄嘌呤氧化酶系统用于生成超氧阴离子(O2-)和过氧化氢(H2O2),而精胺/NO加合物的自发分解用于以已知且恒定的速率生成NO。我们评估了肌红蛋白(Mb)或血红蛋白(Hb)在存在O2-/H2O2和/或NO的情况下将二氢罗丹明(DHR)氧化为罗丹明(RH)的能力。在恒定通量的O2-和H2O2(各1 nmol/分钟)存在下,500 nM高铁肌红蛋白(Fe3+)将DHR氧化从通常无法检测到的水平提高到约35 microM。该氧化反应被过氧化氢酶抑制,但不被超氧化物歧化酶抑制,这表明形成了高铁血红素蛋白加合物(Fe4+)。等摩尔通量的O2-、H2O2和NO进一步将DHR氧化提高到约50 microM。DHR氧化增加的15 microM与血红素浓度无关,并被超氧化物歧化酶抑制。这表明等量的O2-和NO相互作用产生一种强氧化剂,如过氧亚硝酸盐(OONO-),它与Mb-Fe4+一起氧化DHR。NO通量的进一步增加通过对Mb-Fe4+形成的NO依赖性抑制显著抑制了DHR氧化(80%)。使用高铁血红蛋白(Hb-Fe3+)催化的氧化反应进行的其他研究得出了几乎相同的结果。我们得出结论,在存在肌红蛋白或血红蛋白等血红素蛋白的情况下,NO可能根据O2-、H2O2和NO的相对通量促进或抑制氧化反应。