Suppr超能文献

识别长期护理机构中现有居民死亡相关因素的实用方法。

A practical approach to identifying mortality-related factors in established long-term care residents.

作者信息

Flacker J M, Kiely D K

机构信息

Hebrew Rehabilitation Center for Aged Research, and Harvard Medical School Division on Aging, Boston, Massachusetts 02131, USA.

出版信息

J Am Geriatr Soc. 1998 Aug;46(8):1012-5. doi: 10.1111/j.1532-5415.1998.tb02759.x.

Abstract

OBJECTIVE

Determining prognosis is an important part of medical planning for long-term care residents. Clarifying the resident characteristics associated with increased mortality has received little attention from investigators, and many approaches that have been suggested are unsuitable for widespread use. Using a readily available database, we sought to determine factors associated with 1-year mortality in established long-term care residents.

DESIGN

A retrospective cohort study.

SETTING

A 725-bed long-term care facility.

MEASUREMENTS

We examined Minimum Data Set (MDS) information on 780 residents from April 1994 through August 1997. The association between death and 65 resident factors, covering a broad array of physical, functional, medical, and psychosocial measures, was examined initially in bivariate proportional hazards models. Putative factors with P values < .10 in bivariate analysis were considered in the multivariate analysis. Using these factors, we employed a forward step-wise multivariate proportional hazards regression method to select the set of factors associated independently with mortality at a P value < .05. A mortality score was developed by assigning points to each factor based on the risk ratio in the multivariate proportional hazards model. The performance characteristics of the model were examined using logistic regression.

RESULTS

Forty-four of the 65 factors examined were associated with 1-year mortality in bivariate proportional hazards analysis. Eight of these 44 factors were associated with 1-year mortality in the multivariate proportional hazards regression. These factors were functional impairment, weight loss, shortness of breath, male gender, low body mass index, swallowing problems, congestive heart failure, and advanced age. A higher mortality score was associated with a higher death rate in the subsequent year. The model demonstrated good performance with an area under the ROC curve of 0.77.

CONCLUSIONS

Using a widely available database that requires no additional medical testing or staff training, a useful model for identifying factors associated with 1-year mortality in established long-term care residents can be developed. Widespread use of such a practical approach to assess mortality risk could be of benefit to patients, their families, and physicians for informing care plan decisions.

摘要

目的

确定预后是长期护理机构医疗规划的重要组成部分。明确与死亡率增加相关的居民特征这一问题,很少受到研究者的关注,并且许多已提出的方法并不适合广泛应用。我们利用一个现成的数据库,试图确定在已入住的长期护理居民中与1年死亡率相关的因素。

设计

一项回顾性队列研究。

地点

一家拥有725张床位的长期护理机构。

测量

我们检查了1994年4月至1997年8月期间780名居民的最小数据集(MDS)信息。最初在双变量比例风险模型中检查死亡与65个居民因素之间的关联,这些因素涵盖了广泛的身体、功能、医疗和社会心理指标。在多变量分析中考虑双变量分析中P值<0.10的假定因素。利用这些因素,我们采用向前逐步多变量比例风险回归方法,以P值<0.05选择与死亡率独立相关的因素集。通过根据多变量比例风险模型中的风险比为每个因素分配分数来制定死亡率评分。使用逻辑回归检查模型的性能特征。

结果

在双变量比例风险分析中,所检查的65个因素中有44个与1年死亡率相关。在多变量比例风险回归中,这44个因素中的8个与1年死亡率相关。这些因素包括功能障碍、体重减轻、呼吸急促、男性、低体重指数、吞咽问题、充血性心力衰竭和高龄。较高的死亡率评分与次年较高的死亡率相关。该模型表现良好,ROC曲线下面积为0.77。

结论

利用一个无需额外医学检测或员工培训的广泛可用数据库,可以开发出一个用于识别已入住的长期护理居民中与1年死亡率相关因素的有用模型。广泛使用这种实用方法来评估死亡风险,可能会使患者、其家属和医生受益,有助于做出护理计划决策。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验