Lawrence A J, Castillo-Meléndez M, McLean K J, Jarrott B
Department of Pharmacology, Monash University, Clayton, Vic., Australia.
J Chem Neuroanat. 1998 Jul;15(1):27-40. doi: 10.1016/s0891-0618(98)00020-9.
The present study has employed immunocytochemistry on free-floating sections of adult rat medulla oblongata to characterise the distribution of nitric oxide synthase- (NOS), adenosine deaminase- (ADA) and neuropeptide Y- (NPY) immunoreactivity (IR) throughout the entire rostro-caudal axis of the nucleus tractus solitarius (NTS). In addition, unilateral nodose ganglionectomy was performed in a group of rats to determine whether any observed immunoreactivity was associated with central vagal afferent terminals. NOS-IR was found throughout the entire NTS, in cells, and both varicose and non-varicose fibres. Furthermore, unilateral nodose ganglionectomy resulted in a clear reduction in NOS-IR (visualised with diaminobenzidine) in a highly restricted portion of the ipsilateral medial NTS. Similarly, ADA- and NPY-containing cells, fibres and terminals were also found throughout the adult rat NTS. However, following unilateral nodose ganglionectomy, there was no apparent reduction in either ADA-IR or NPY-IR on the denervated side of the NTS. These data indicate a role for nitric oxide, purines and neuropeptide Y as neuromodulators within the rat NTS, although only nitric oxide appears to be primarily associated with vagal afferent input. Adenosine deaminase and neuropeptide Y-containing neurons appear to be predominantly postsynaptic to vagal input, although their possible association with vagal afferents cannot be completely excluded.