Spee J H, Arendsen A F, Wassink H, Marritt S J, Hagen W R, Haaker H
Department of Biomolecular Sciences, Agricultural University, Wageningen, The Netherlands.
FEBS Lett. 1998 Jul 31;432(1-2):55-8. doi: 10.1016/s0014-5793(98)00827-8.
Nitrogenase is a two-component metalloenzyme that catalyzes a MgATP hydrolysis driven reduction of substrates. Aluminum fluoride plus MgADP inhibits nitrogenase by stabilizing an intermediate of the on-enzyme MgATP hydrolysis reaction. We report here the redox properties and electron paramagnetic resonance (EPR) signals of the aluminum fluoride-MgADP stabilized nitrogenase complex of Azotobacter vinelandii. Complex formation lowers the midpoint potential of the [4Fe-4S] cluster in the Fe protein. Also, the two-electron reaction of the unique [8Fe-7S] cluster in the MoFe protein is split in two one-electron reactions both with lower midpoint potentials. Furthermore, a change in spin-state of the two-electron oxidized [8Fe-7S] cluster is observed. The implications of these findings for the mechanism of MgATP hydrolysis driven electron transport within the nitrogenase protein complex are discussed.
固氮酶是一种双组分金属酶,可催化由MgATP水解驱动的底物还原反应。氟化铝与MgADP通过稳定酶上MgATP水解反应的中间体来抑制固氮酶。我们在此报告了棕色固氮菌中氟化铝-MgADP稳定化固氮酶复合物的氧化还原特性和电子顺磁共振(EPR)信号。复合物的形成降低了铁蛋白中[4Fe-4S]簇的中点电位。此外,钼铁蛋白中独特的[8Fe-7S]簇的双电子反应被拆分为两个单电子反应,且两者的中点电位都较低。此外,还观察到双电子氧化的[8Fe-7S]簇的自旋态发生了变化。本文讨论了这些发现对固氮酶蛋白复合物中MgATP水解驱动的电子传输机制的影响。