Chase T N, Oh J D, Blanchet P J
Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-1406, USA.
Neurology. 1998 Aug;51(2 Suppl 2):S30-5. doi: 10.1212/wnl.51.2_suppl_2.s30.
Normal motor function is dependent on the highly regulated synthesis and release of dopamine (DA) by neurons projecting from substantia nigra to corpus striatum. Cardinal symptoms of Parkinson's disease (PD) arise as a consequence of a deficiency in striatal DA due to the progressive degeneration of this neuronal system. Under such circumstances, the subunit composition and/or phosphorylation state of glutamatergic receptors of the N-methyl-D-aspartate (NMDA) subtype expressed on the dendritic spines of medium-sized striatal neurons changes in ways that compromise motor performance. Although levodopa acts, after conversion to DA, to reverse these changes by restoring striatal dopaminergic transmission, significant differences exist between the normally functioning DA system and the restoration of function provided by standard levodopa therapy. The nonphysiologic stimulation of DA receptors on striatal spiny neurons associated with current levodopa regimens now appears to contribute to the motor response complications that ultimately affect most parkinsonian patients. Current evidence suggests that alterations in signaling systems linking dopaminergic and glutamatergic receptors within these GABAergic efferent neurons induce NMDA receptor modification. Functionally, the resultant long-term change in glutamatergic synaptic efficacy leads to alterations in spiny neuron output, favoring the appearance of motor complications. Although dopaminomimetic replacement strategies that provide more continuous DA receptor stimulation should alleviate these disabling complications, more innovative approaches to the interdiction of pathologic changes in signal transduction components or glutamate receptor sensitivity could ultimately prove safer and more effective for the treatment of all stages of PD.
正常的运动功能依赖于从黑质投射到纹状体的神经元对多巴胺(DA)进行高度调节的合成与释放。帕金森病(PD)的主要症状是由于该神经元系统的进行性退化导致纹状体DA缺乏所致。在这种情况下,中型纹状体神经元树突棘上表达的N-甲基-D-天冬氨酸(NMDA)亚型谷氨酸能受体的亚基组成和/或磷酸化状态会发生改变,从而损害运动表现。尽管左旋多巴转化为DA后,通过恢复纹状体多巴胺能传递来逆转这些变化,但正常功能的DA系统与标准左旋多巴治疗所提供的功能恢复之间存在显著差异。目前左旋多巴治疗方案中与纹状体棘状神经元上DA受体的非生理性刺激现在似乎导致了最终影响大多数帕金森病患者的运动反应并发症。目前的证据表明,这些γ-氨基丁酸能传出神经元内连接多巴胺能和谷氨酸能受体的信号系统的改变会诱导NMDA受体修饰。从功能上讲,谷氨酸能突触效能的长期变化会导致棘状神经元输出的改变,从而增加运动并发症的出现。尽管提供更持续DA受体刺激的拟多巴胺替代策略应能减轻这些致残性并发症,但针对信号转导成分或谷氨酸受体敏感性的病理变化进行阻断的更具创新性的方法最终可能被证明对治疗PD的所有阶段更安全、更有效。