Krendel M, Sgourdas G, Bonder E M
Department of Biological Sciences, Rutgers University-Newark, New Jersey, USA.
Cell Motil Cytoskeleton. 1998;40(4):368-78. doi: 10.1002/(SICI)1097-0169(1998)40:4<368::AID-CM5>3.0.CO;2-7.
In activated sea urchin coelomocytes, cytoplasmic organelles move along distinct actin and microtubule dependent pathways, actin-based motility is driven by an unconventional myosin, and microtubule disassembly does not effect actin-dependent organelle motility [D'Andrea et al., 1994: J. Cell Sci. 107:2081-2094]. Given the growing evidence for potential interactions between components of the actin and microtubule cytoskeletons, we examined the effect of actin filament disassembly on the movement of mitochondria along microtubules in activated coelomocytes. Coelomocytes treated with cytochalasin B (CB), to disrupt actin filaments, exhibited a thinning of the cytoplasm, enhanced lateral undulation of microtubules, and ceased centripetal cortical flow of actin. Interestingly, the loss of actin filaments resulted in a approximately 1.5-fold increase in the average velocity of outward and inward moving mitochondria and increased the frequency of centripetal movement. To test if enhanced motility along microtubules was a consequence of decreased actin-myosin interaction, coelomocytes were treated with 2,3-butanedione monoxime (BDM), a potent inhibitor of myosin activity [Cramer and Mitchison, 1995: J. Cell Biol. 131:179-189]. BDM inhibited all types of actin-based motility observed in these cells including retrograde cortical flow, protrusion and retraction of the cell edge, and movement of intracellular organelles. Surprisingly, BDM treatment stopped the movement of mitochondria in CB-exposed cells, suggesting that BDM can also act as an inhibitor of organelle movement along microtubules. Collectively, these data demonstrated that microtubule-dependent mitochondrial motility and microtubule movement were sensitive to changes in the assembly state of the actin cytoskeleton.
在活化的海胆体腔细胞中,细胞质细胞器沿着不同的肌动蛋白和微管依赖途径移动,基于肌动蛋白的运动由一种非常规肌球蛋白驱动,并且微管解聚不影响依赖肌动蛋白的细胞器运动[D'Andrea等人,1994年:《细胞科学杂志》107:2081 - 2094]。鉴于越来越多的证据表明肌动蛋白和微管细胞骨架成分之间存在潜在相互作用,我们研究了肌动蛋白丝解聚对活化体腔细胞中线粒体沿微管运动的影响。用细胞松弛素B(CB)处理体腔细胞以破坏肌动蛋白丝,结果显示细胞质变薄,微管的侧向波动增强,并且肌动蛋白向心皮质流停止。有趣的是,肌动蛋白丝的缺失导致向外和向内移动的线粒体平均速度增加约1.5倍,并增加了向心运动的频率。为了测试沿微管增强的运动是否是肌动蛋白 - 肌球蛋白相互作用减少的结果,用2,3 - 丁二酮一肟(BDM)处理体腔细胞,BDM是一种有效的肌球蛋白活性抑制剂[Cramer和Mitchison,1995年:《细胞生物学杂志》131:179 - 189]。BDM抑制了在这些细胞中观察到的所有类型的基于肌动蛋白的运动,包括逆行皮质流、细胞边缘的突出和回缩以及细胞内细胞器的运动。令人惊讶的是,BDM处理使CB处理的细胞中线粒体停止运动,这表明BDM也可以作为细胞器沿微管运动的抑制剂。总体而言,这些数据表明微管依赖的线粒体运动和微管运动对肌动蛋白细胞骨架组装状态的变化敏感。