Suppr超能文献

肺泡表面网络:一种新的解剖结构及其生理意义。

The alveolar surface network: a new anatomy and its physiological significance.

作者信息

Scarpelli E M

机构信息

Perinatology Center, Cornell University College of Medicine, New York, New York 10021, USA.

出版信息

Anat Rec. 1998 Aug;251(4):491-527. doi: 10.1002/(SICI)1097-0185(199808)251:4<491::AID-AR8>3.0.CO;2-V.

Abstract

UNLABELLED

It is generally held that the terminal lung unit (TLU) is an agglomeration of alveoli that opens into the branching air spaces of respiratory bronchioles, alveolar ducts, and alveolar sacs and that these structures are covered by a continuous thin liquid layer bearing a monomolecular film of surfactants at the open gas-liquid interface. The inherent structural and functional instability given TLUs by a broad liquid surface layer of this nature has been mitigated by the discovery that the TLU surface is in fact an agglomeration of bubbles, a foam (the alveolar surface network) that fills the TLU space and forms ultrathin foam films that 1) impart infrastructural stability to sustain aeration, 2) modulate circulation of surface liquid, both in series and in parallel, throughout the TLU and between TLUs and the liquid surface of conducting airways, 3) modulate surface liquid volume and exchange with interstitial liquid, and 4) sustain gas transfer between conducting airways and pulmonary capillaries throughout the respiratory cycle. The experimental evidence, from discovery to the present, is addressed in this report. Lungs were examined in thorax by stereomicroscopy immediately from the in vivo state at volumes ranging from functional residual capacity to maximal volume (Vmax). Lungs were then excised; bubble topography of all anterior and anterolateral surfaces was reaffirmed and also confirmed for all posterior and posterolateral surfaces. The following additional criteria verify the ubiquitous presence of normal intraalveolar bubbles. 1) Bubbles are absent in conducting airways. 2) Bubbles are stable and stationary in TLUs but can be moved individually by gentle microprobe pressure. 3) Adjoining bubbles move into the external medium through subpleural microincisions; there is no free gas, and vacated spaces are rendered airless. Adjacent bubbles may shift position in situ, while more distal bubbles remain stationary. 4) The position and movement of "large" bubbles identifies them as intraductal bubbles. 5) Transection of the lung reveals analogous bubble occurrence and history in central lung regions. 6) Bubbles become fixed in place and change shape when the lung is dried in air; the original shape and movement are restored when the lung is rewet. 7) All exteriorized bubbles are stable with lamellar (film) surface tension near zero. 8) Intact lungs prepared and processed by the new double-embedding technique reveal the intact TLU bubbles and bubble films. Lungs were also monitored directly by stereomicroscopy to establish their presence, transformations, and apparent function from birth through adulthood, as summarized in the following section.

ANATOMY

Intraalveolar bubbles and bubble films (the unit structures of the alveolar surface network) have been found in all mammalian species examined to date, including lambs, kids, and rabbit pups and adult mice, rats, rabbits, cats, and pigs. Rabbits were used for the definitive studies. 1) A unit bubble occupies each alveolus and branching airway of the TLU; unit bubbles in clusters correspond with alveolar clusters. 2) The appositions of unit bubble lamellae (films) form a network of liquid channels within the TLUs. The appositions are bubble to bubble (near alveolar entrances, at pores of Kohn, and between ductal bubbles), bubble to epithelial cell surface, and bubble to surface liquid of conducting airways. They rapidly form stable Newtonian black foam films (approximately 7 nm thick) under hydrodynamic conditions expected in vivo. 3) Lamellae of the foam films and bubbles tend to exclude bulk liquid and thus maintain near-zero surface tension. At the same time, the foam film formations--abetted by the constant but small retractive force of tissue recoil--stabilize unit bubble position within the network. 4) Unit bubble mobility in response to applied force increases as liquid accumulates within the network (e.g. (ABSTRACT TRUNCATED)

摘要

未标记

一般认为,终末肺单位(TLU)是肺泡的聚集体,这些肺泡通向呼吸性细支气管、肺泡管和肺泡囊的分支气腔,并且这些结构被一层连续的薄液层覆盖,该液层在开放的气液界面处带有一层表面活性剂单分子膜。这种性质的宽液面层赋予TLU的内在结构和功能不稳定性已通过以下发现得到缓解:TLU表面实际上是气泡的聚集体,即一种泡沫(肺泡表面网络),它填充TLU空间并形成超薄泡沫膜,这些泡沫膜:1)赋予基础设施稳定性以维持通气;2)调节表面液体在整个TLU内以及在TLU与传导气道的液体表面之间的串联和并联循环;3)调节表面液体体积并与间质液进行交换;4)在整个呼吸周期中维持传导气道与肺毛细血管之间的气体交换。本报告阐述了从发现至今的实验证据。通过立体显微镜在胸腔内对处于功能残气量至最大体积(Vmax)范围内的活体状态的肺进行检查。然后将肺切除;再次确认所有前表面和前外侧表面的气泡形态,并对所有后表面和后外侧表面进行确认。以下附加标准证实了正常肺泡内气泡的普遍存在。1)传导气道中不存在气泡。2)气泡在TLU中稳定且静止,但可通过轻柔的微探针压力单独移动。3)相邻气泡通过胸膜下微切口移入外部介质;不存在游离气体,腾出的空间变为无气状态。相邻气泡可能在原位移位,而更远端的气泡保持静止。4)“大”气泡的位置和移动将它们识别为导管内气泡。5)肺的横切面显示中央肺区域存在类似的气泡情况和历史。6)当肺在空气中干燥时,气泡固定在原位并改变形状;当肺重新湿润时,恢复其原始形状和移动。7)所有外露的气泡稳定,其层状(薄膜)表面张力接近零。8)采用新的双重包埋技术制备和处理的完整肺显示出完整的TLU气泡和气泡膜。还通过立体显微镜直接监测肺,以确定从出生到成年期它们(气泡)的存在、转变及其明显功能,如下文所述。

解剖学

在迄今为止检查的所有哺乳动物物种中都发现了肺泡内气泡和气泡膜(肺泡表面网络的单位结构),包括羔羊、幼羊、兔幼崽以及成年小鼠、大鼠、兔子、猫和猪。以兔子进行确定性研究。1)一个单位气泡占据TLU的每个肺泡和分支气道;成簇的单位气泡与肺泡簇相对应。2)单位气泡薄片(薄膜)的并置在TLU内形成液体通道网络。这些并置包括气泡与气泡之间(在肺泡入口附近、科恩孔处以及导管气泡之间)、气泡与上皮细胞表面之间以及气泡与传导气道的表面液体之间。在体内预期的流体动力学条件下,它们迅速形成稳定的牛顿黑色泡沫膜(约7纳米厚)。3)泡沫膜和气泡的薄片倾向于排除大量液体,从而保持接近零的表面张力。同时,泡沫膜的形成——在组织回缩的恒定但较小的回缩力辅助下——稳定了网络内单位气泡的位置。4)随着液体在网络内积聚,单位气泡对施加力的移动性增加(例如(摘要截断)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验