Lemasters J J, Nieminen A L, Qian T, Trost L C, Elmore S P, Nishimura Y, Crowe R A, Cascio W E, Bradham C A, Brenner D A, Herman B
Department of Cell Biology and Anatomy, University of North Carolina at Chapel Hill, CB No. 7090, 236 Taylor Hall, Chapel Hill, NC 27799-7090, USA.
Biochim Biophys Acta. 1998 Aug 10;1366(1-2):177-96. doi: 10.1016/s0005-2728(98)00112-1.
Using confocal microscopy, onset of the mitochondrial permeability transition (MPT) in individual mitochondria within living cells can be visualized by the redistribution of the cytosolic fluorophore, calcein, into mitochondria. Simultaneously, mitochondria release membrane potential-indicating fluorophores like tetramethylrhodamine methylester. The MPT occurs in several forms of necrotic cell death, including oxidative stress, pH-dependent ischemia/reperfusion injury and Ca2+ ionophore toxicity. Cyclosporin A (CsA) and trifluoperazine block the MPT in these models and prevent cell killing, showing that the MPT is a causative factor in necrotic cell death. During oxidative injury induced by t-butylhydroperoxide, onset of the MPT is preceded by pyridine nucleotide oxidation, mitochondrial generation of reactive oxygen species, and an increase of mitochondrial free Ca2+, all changes that promote the MPT. During tissue ischemia, acidosis develops. Because of acidotic pH, anoxic cell death is substantially delayed. However, when pH is restored to normal after reperfusion (reoxygenation at pH 7.4), cell death occurs rapidly (pH paradox). This killing is caused by pH-dependent onset of the MPT, which is blocked by reperfusion at acidotic pH or with CsA. In isolated mitochondria, toxicants causing Reye's syndrome, such as salicylate and valproate, induce the MPT. Similarly, salicylate induces a CsA-sensitive MPT and killing of cultured hepatocytes. These in vitro findings suggest that the MPT is the pathophysiological mechanism underlying Reye's syndrome in vivo. Kroemer and coworkers proposed that the MPT is a critical event in the progression of apoptotic cell death. Using confocal microscopy, the MPT can be directly documented during tumor necrosis factor-alpha induced apoptosis in hepatocytes. CsA blocks this MPT and prevents apoptosis. The MPT does not occur uniformly during apoptosis. Initially, a small proportion of mitochondria undergo the MPT, which increases to nearly 100% over 1-3 h. A technique based on fluorescence resonance energy transfer can selectively reveal mitochondrial depolarization. After nutrient deprivation, a small fraction of mitochondria spontaneously depolarize and enter an acidic lysosomal compartment, suggesting that the MPT precedes the normal process of mitochondrial autophagy. A model is proposed in which onset of the MPT to increasing numbers of mitochondria within a cell leads progressively to autophagy, apoptosis and necrotic cell death.
利用共聚焦显微镜,活细胞内单个线粒体的线粒体通透性转换(MPT)起始可通过胞质荧光团钙黄绿素重新分布到线粒体中而得以可视化。同时,线粒体释放膜电位指示荧光团,如四甲基罗丹明甲酯。MPT发生于多种坏死性细胞死亡形式中,包括氧化应激、pH依赖性缺血/再灌注损伤和Ca2+离子载体毒性。环孢素A(CsA)和三氟拉嗪在这些模型中可阻断MPT并防止细胞死亡,表明MPT是坏死性细胞死亡的一个致病因素。在叔丁基过氧化氢诱导的氧化损伤过程中,MPT起始之前会发生吡啶核苷酸氧化、线粒体活性氧生成以及线粒体游离Ca2+增加,所有这些变化均促进MPT。在组织缺血期间,会发生酸中毒。由于酸性pH值,缺氧性细胞死亡会显著延迟。然而,再灌注(pH 7.4复氧)后pH值恢复正常时,细胞死亡迅速发生(pH反常)。这种细胞死亡是由pH依赖性MPT起始引起的,而在酸性pH值下再灌注或使用CsA可阻断该过程。在分离的线粒体中,导致瑞氏综合征的毒物,如水杨酸盐和丙戊酸盐,可诱导MPT。同样,水杨酸盐可诱导CsA敏感的MPT并导致培养的肝细胞死亡。这些体外研究结果表明,MPT是体内瑞氏综合征的病理生理机制。克罗默及其同事提出,MPT是凋亡性细胞死亡进程中的一个关键事件。利用共聚焦显微镜,可在肿瘤坏死因子-α诱导的肝细胞凋亡过程中直接记录MPT。CsA可阻断该MPT并防止凋亡。MPT在凋亡过程中并非均匀发生。最初,一小部分线粒体发生MPT,在1 - 3小时内增加至近100%。一种基于荧光共振能量转移的技术可选择性地揭示线粒体去极化。营养剥夺后,一小部分线粒体自发去极化并进入酸性溶酶体区室,这表明MPT先于线粒体自噬的正常过程。提出了一个模型,其中细胞内越来越多的线粒体发生MPT起始会逐渐导致自噬、凋亡和坏死性细胞死亡。