Ferrannini E
C.N.R. Institute of Clinical Physiology, University of Pisa, Italy.
Endocr Rev. 1998 Aug;19(4):477-90. doi: 10.1210/edrv.19.4.0336.
A definitive assessment of the relative roles of insulin resistance and insulin deficiency in the etiology of NIDDM is hampered by several problems. 1) Due to better methodology, data on insulin resistance are generally more accurate and consistent than data on insulin deficiency. 2) In source data, case-control studies are prone to selection bias, while epidemiological associations, whether cross-sectional or longitudinal, are liable to misinterpretation. 3) Insulin secretion and action are physiologically interconnected at multiple levels, so that an initial defect in either is likely to lead with time to a deficit in the companion function. The fact that both insulin resistance and impaired insulin release have been found to precede and predict NIDDM in prospective studies may be in part a reflection of just such relatedness. 4) Direct genetic analysis is effective in rarer forms of glucose intolerance (MODY, mitochondrial mutations, etc.) but encounters serious difficulties with typical late-onset NIDDM. Despite these uncertainties, the weight of current evidence supports the view that insulin resistance is very important in the etiology of typical NIDDM for the following reasons: 1) it is found in the majority of patients with the manifest disease; 2) it is only partially reversible by any form of treatment (117); 3) it can be traced back through earlier stages of IGT and high-risk conditions; and 4) it predicts subsequent development of the disease with remarkable consistency in both prediabetic and normoglycemic states. Of conceptual importance is also the fact that the key cellular mechanisms of skeletal muscle insulin resistance (defective stimulation of glucose transport, phosphorylation, and storage into glycogen) have been confirmed in NIDDM subjects by a variety of in vivo techniques [ranging from catheter balance (118) to multiple tracer kinetics (119) to 13C nuclear magnetic resonance spectroscopy (120)], and have been detected also in normoglycemic NIDDM offspring (121). If insulin resistance is a characteristic finding in many cases of NIDDM, insulin-sensitive NIDDM does exist. On the other hand, given the tight homeostatic control of plasma glucose levels in humans, beta-cell dysfunction, relative or absolute, is a sine qua non for the development of diabetes. If insulin deficiency must be present whereas insulin resistance may be present, is this proof that the former is etiologically primary to the latter? If so, do we have convincing evidence that the primacy of insulin deficiency is genetic in nature? The answer to both questions is negative on several accounts. The defect in insulin secretion in overt NIDDM is functionally severe but anatomically modest: beta-cell mass is reduced by 20-40% in patients with long-standing NIDDM (122). Moreover, the insulin secretory deficit is progressively worse with more severe hyperglycemia (123) and recovers considerably upon improving glycemic control (124). These observations indicate that part of the insulin deficiency is acquired (through glucose toxicity, lipotoxicity, or both). In addition, although insulin deficiency is necessary for diabetes, it may not always be sufficient to cause NIDDM. In fact, subtle defects in the beta-cell response to glucose may be widespread in the population (108, 125) and only cause frank hyperglycemia when obesity/insulin resistance stress the secretory machinery. Conceivably, there could be beta-cell dysfunction without NIDDM just as there is insulin resistance without diabetes. Incidentally, any defect in insulin secretion, whether in normoglycemic or hyperglycemic persons, could be due to other factors than primary beta-cell dysfunction: amyloid deposits in the pancreas (126), changes in insulin secretagogues (amylin, GLP-1, GIP, galanin) (127-130), early intrauterine malnutrition (131). Finally, the predictive power of early changes in insulin secretion for the development of typical NIDDM is generally lower than that of insulin
胰岛素抵抗和胰岛素缺乏在非胰岛素依赖型糖尿病(NIDDM)病因学中的相对作用,由于几个问题而难以进行确切评估。1)由于方法学更完善,关于胰岛素抵抗的数据通常比关于胰岛素缺乏的数据更准确、更一致。2)在原始数据中,病例对照研究容易出现选择偏倚,而流行病学关联,无论是横断面的还是纵向的,都容易被误解。3)胰岛素分泌和作用在生理上在多个层面相互关联,因此任何一方的初始缺陷随着时间的推移都可能导致另一方功能不足。在前瞻性研究中发现胰岛素抵抗和胰岛素释放受损都先于并可预测NIDDM,这一事实可能部分反映了这种关联性。4)直接基因分析对罕见形式的葡萄糖不耐受(青少年发病的成年型糖尿病、线粒体突变等)有效,但对于典型的晚发型NIDDM却遇到严重困难。尽管存在这些不确定性,但目前的证据权重支持以下观点,即胰岛素抵抗在典型NIDDM的病因学中非常重要,原因如下:1)在大多数显性疾病患者中都能发现;2)任何形式的治疗只能部分逆转(117);3)可以追溯到糖耐量受损(IGT)和高危状态的早期阶段;4)在糖尿病前期和血糖正常状态下,它都能显著一致地预测疾病的后续发展。同样具有概念重要性的是,骨骼肌胰岛素抵抗的关键细胞机制(葡萄糖转运、磷酸化以及储存为糖原的刺激缺陷)已通过多种体内技术在NIDDM患者中得到证实[从导管平衡(118)到多重示踪动力学(119)再到13C核磁共振波谱(120)],并且在血糖正常的NIDDM后代中也已检测到(121)。如果胰岛素抵抗是许多NIDDM病例中的特征性发现,那么胰岛素敏感型NIDDM确实存在。另一方面,鉴于人体血浆葡萄糖水平受到严格的稳态控制,β细胞功能障碍,无论是相对的还是绝对的,都是糖尿病发生的必要条件。如果必须存在胰岛素缺乏而胰岛素抵抗可能存在,这是否证明前者在病因学上先于后者?如果是这样,我们是否有令人信服的证据表明胰岛素缺乏的首要地位是由基因决定的?从几个方面来看,这两个问题的答案都是否定的。显性NIDDM中胰岛素分泌的缺陷在功能上很严重,但在解剖学上并不明显:长期NIDDM患者的β细胞量减少20 - 40%(122)。此外,随着高血糖症加重,胰岛素分泌缺陷会逐渐恶化(123),而血糖控制改善后会有相当程度的恢复(124)。这些观察结果表明,部分胰岛素缺乏是后天获得的(通过葡萄糖毒性、脂毒性或两者兼有)。此外,虽然胰岛素缺乏是糖尿病所必需的,但它可能并不总是足以导致NIDDM。事实上,β细胞对葡萄糖反应的细微缺陷在人群中可能很普遍(108, 125),只有在肥胖/胰岛素抵抗使分泌机制承受压力时才会导致明显的高血糖。可以想象,可能存在没有NIDDM的β细胞功能障碍,就像存在没有糖尿病的胰岛素抵抗一样。顺便说一下,无论是血糖正常还是高血糖的人,胰岛素分泌的任何缺陷都可能是由于原发性β细胞功能障碍以外的其他因素:胰腺中的淀粉样沉积物(126)、胰岛素促分泌素(胰淀素、胰高血糖素样肽 - 1、葡萄糖依赖性促胰岛素多肽、甘丙肽)的变化(127 - 130)、早期子宫内营养不良(131)。最后,胰岛素分泌早期变化对典型NIDDM发展的预测能力通常低于胰岛素