Suppr超能文献

核磁共振光谱分类和代谢物选择中统计和神经网络方法的评估

Assessment of statistical and neural networks methods in NMR spectral classification and metabolite selection.

作者信息

Lisboa P J, Kirby S P, Vellido A, Lee Y Y, El-Deredy W

机构信息

School of Computing and Mathematical Sciences, Liverpool John Moores University, UK.

出版信息

NMR Biomed. 1998 Jun-Aug;11(4-5):225-34. doi: 10.1002/(sici)1099-1492(199806/08)11:4/5<225::aid-nbm509>3.0.co;2-q.

Abstract

Magnetic resonance spectroscopy opens a window into the biochemistry of living tissue. However, spectra acquired from different tissue types in vivo or in vitro and from body fluids contain a large number of peaks from a range of metabolites, whose relative intensities vary substantially and in complicated ways even between successive samples from the same category. The realization of the full clinical potential of NMR spectroscopy relies, in part, on our ability to interpret and quantify the role of individual metabolites in characterizing specific tissue and tissue conditions. This paper addresses the problem of tissue classification by analysing NMR spectra using statistical and neural network methods. It assesses the performance of classification models from a range of statistical methods and compares them with the performance of artificial neural network models. The paper also assesses the consistency of the models in selecting, directly from the spectra, the subsets of metabolites most relevant for differentiating between tissue types. The analysis techniques are examined using in vitro spectra from eight classes of normal tissue and tumours obtained from rats. We show that, for the given data set, the performance of linear and non-linear methods is comparable, possibly due to the small sample size per class. We also show that using a subset of metabolites selected by linear discriminant analysis for further analysis by neural networks improves the classification accuracy, and reduces the number of metabolites necessary for correct classification.

摘要

磁共振波谱学为洞察活组织的生物化学过程打开了一扇窗口。然而,在体内或体外从不同组织类型以及从体液中获取的波谱包含了来自一系列代谢物的大量峰,即使在同一类别的连续样本之间,其相对强度也会以复杂的方式大幅变化。实现核磁共振波谱学的全部临床潜力,部分依赖于我们解释和量化单个代谢物在表征特定组织和组织状况中所起作用的能力。本文通过使用统计和神经网络方法分析核磁共振波谱来解决组织分类问题。它评估了一系列统计方法的分类模型的性能,并将其与人工神经网络模型的性能进行比较。本文还评估了这些模型在直接从波谱中选择与区分组织类型最相关的代谢物子集方面的一致性。使用从大鼠获得的八类正常组织和肿瘤的体外波谱对分析技术进行了检验。我们表明,对于给定的数据集,线性和非线性方法的性能相当,这可能是由于每类样本量较小所致。我们还表明,使用通过线性判别分析选择的代谢物子集由神经网络进行进一步分析可提高分类准确率,并减少正确分类所需的代谢物数量。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验