Suppr超能文献

本氏烟草对致病疫霉的抗性是由激发子蛋白INF1的识别介导的。

Resistance of nicotiana benthamiana to phytophthora infestans is mediated by the recognition of the elicitor protein INF1.

作者信息

Kamoun S, Vleeshouwers VG, Govers F

机构信息

Laboratory of Phytopathology and Graduate School, Experimental Plant Sciences, Wageningen Agricultural University, Wageningen, The Netherlands.

出版信息

Plant Cell. 1998 Sep;10(9):1413-26. doi: 10.1105/tpc.10.9.1413.

Abstract

Phytophthora infestans, the agent of potato and tomato late blight disease, produces a 10-kD extracellular protein, INF1 elicitin. INF1 induces a hypersensitive response in a restricted number of plants, particularly those of the genus Nicotiana. In virulence assays with different P. infestans isolates, five Nicotiana species displayed resistance responses. In all of the interactions, after inoculation with P. infestans zoospores, penetration of an epidermal cell was observed, followed by localized necrosis typical of a hypersensitive response. To determine whether INF1 functions as an avirulence factor in these interactions, we adopted a gene-silencing strategy to inhibit INF1 production. Several transformants deficient in inf1 mRNA and INF1 protein were obtained. These strains remained pathogenic on host plants. However, in contrast to the wild-type and control transformant strains, INF1-deficient strains induced disease lesions when inoculated on N. benthamiana. These results demonstrate that the elicitin INF1 functions as an avirulence factor in the interaction between N. benthamiana and P. infestans.

摘要

致病疫霉是马铃薯和番茄晚疫病的病原体,它能产生一种10千道尔顿的细胞外蛋白——激发素INF1。INF1能在有限数量的植物中诱导过敏反应,尤其是烟草属植物。在对不同致病疫霉分离株的毒力测定中,有五种烟草属植物表现出抗性反应。在所有这些相互作用中,接种致病疫霉游动孢子后,观察到其穿透表皮细胞,随后出现典型过敏反应的局部坏死。为了确定INF1在这些相互作用中是否作为无毒因子起作用,我们采用基因沉默策略来抑制INF1的产生。获得了几个缺乏inf1 mRNA和INF1蛋白的转化体。这些菌株在寄主植物上仍具致病性。然而,与野生型和对照转化体菌株不同,缺乏INF1的菌株接种到本氏烟草上时会诱导病害病斑。这些结果表明,激发素INF1在本氏烟草与致病疫霉的相互作用中作为无毒因子起作用。

相似文献

3
A gene encoding a protein elicitor of Phytophthora infestans is down-regulated during infection of potato.
Mol Plant Microbe Interact. 1997 Jan;10(1):13-20. doi: 10.1094/MPMI.1997.10.1.13.
5
AP2/ERF Transcription Factor NbERF-IX-33 Is Involved in the Regulation of Phytoalexin Production for the Resistance of to .
Front Plant Sci. 2022 Jan 27;12:821574. doi: 10.3389/fpls.2021.821574. eCollection 2021.
6
Loss of Production of the Elicitor Protein INF1 in the Clonal Lineage US-1 of Phytophthora infestans.
Phytopathology. 1998 Dec;88(12):1315-23. doi: 10.1094/PHYTO.1998.88.12.1315.
9
Silencing of DS2 aminoacylase-like genes confirms basal resistance to Phytophthora infestans in Nicotiana benthamiana.
Plant Signal Behav. 2014;9(2):e28004. doi: 10.4161/psb.28004. Epub 2014 Feb 10.

引用本文的文献

2
Secretes RsCAP3 to Target Nb14-3-3b, Interfering with Hormone-Mediated Resistance in .
J Agric Food Chem. 2025 Jul 2;73(26):16109-16120. doi: 10.1021/acs.jafc.5c00921. Epub 2025 Jun 23.
3
Late blight pathogen targets host Rab-G3 GTPases with an atypical GTPase-activating protein.
J Integr Plant Biol. 2025 Aug;67(8):2135-2150. doi: 10.1111/jipb.13920. Epub 2025 May 7.
4
The oligosaccharyltransferase subunit PsSTT3A regulates N-glycosylation and is critical for development and virulence of Phytophthora sojae.
Sci China Life Sci. 2025 May;68(5):1384-1399. doi: 10.1007/s11427-024-2807-y. Epub 2025 Mar 7.
5
6
Identification of RxLR Effector Genes Genome Sequencing.
Mycobiology. 2024 Nov 17;52(5):306-316. doi: 10.1080/12298093.2024.2408064. eCollection 2024.
7
Dual activation of soybean resistance against Phytophthora sojae by pectin lyase and degraded pectin oligosaccharides.
Sci China Life Sci. 2024 Dec;67(12):2746-2760. doi: 10.1007/s11427-024-2724-5. Epub 2024 Nov 13.
10
Infection of Isolates on .
J Fungi (Basel). 2024 Jun 26;10(7):446. doi: 10.3390/jof10070446.

本文引用的文献

1
The hypersensitive response and the induction of cell death in plants.
Cell Death Differ. 1997 Dec;4(8):671-83. doi: 10.1038/sj.cdd.4400309.
2
Potential Role of Elicitins in the Interaction between Phytophthora Species and Tobacco.
Appl Environ Microbiol. 1994 May;60(5):1593-8. doi: 10.1128/aem.60.5.1593-1598.1994.
3
Bacterial avirulence genes.
Annu Rev Phytopathol. 1996;34:153-79. doi: 10.1146/annurev.phyto.34.1.153.
4
PLANT DISEASE RESISTANCE GENES.
Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:575-607. doi: 10.1146/annurev.arplant.48.1.575.
5
Preformed Antimicrobial Compounds and Plant Defense against Fungal Attack.
Plant Cell. 1996 Oct;8(10):1821-1831. doi: 10.1105/tpc.8.10.1821.
6
Plant Disease Resistance Genes: Function Meets Structure.
Plant Cell. 1996 Oct;8(10):1757-1771. doi: 10.1105/tpc.8.10.1757.
7
Genetics and Utilization of Pathogen Resistance in Plants.
Plant Cell. 1996 Oct;8(10):1747-1755. doi: 10.1105/tpc.8.10.1747.
8
Fungal Infection of Plants.
Plant Cell. 1996 Oct;8(10):1711-1722. doi: 10.1105/tpc.8.10.1711.
9
Bacterial Pathogens in Plants: Life up against the Wall.
Plant Cell. 1996 Oct;8(10):1683-1698. doi: 10.1105/tpc.8.10.1683.
10
Correlation of Rapid Cell Death with Metabolic Changes in Fungus-Infected, Cultured Parsley Cells.
Plant Physiol. 1996 Sep;112(1):433-444. doi: 10.1104/pp.112.1.433.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验