Botti S A, Felder C E, Sussman J L, Silman I
Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
Protein Eng. 1998 Jun;11(6):415-20. doi: 10.1093/protein/11.6.415.
The concept of an electrostatic motif on the surface of biological macromolecules as a definite topographical pattern of electrostatic potentials in three-dimensional space, provides a powerful tool for identification of functionally important regions on the surface of structurally related macromolecules. Using this approach, we identify a functional region common to cholinesterases (ChEs) and to a set of neural cell-adhesion proteins that have been suggested to be structurally related to cholinesterases due to their high sequence similarity, but lacking the key catalytically active serine. Quantitative analysis of the electrostatic surface potential in the area surrounding the entrance to the active site of acetylcholinesterase, and in the analogous zone for the ChE-like domain of the adhesion proteins reveals very good correlation. These findings, examined in the context of previous evidence involving this same region in a possible cell-recognition function for ChEs, leads us to define a class of adhesion proteins which we have named 'electrotactins'.
生物大分子表面的静电基序概念,作为三维空间中静电势的一种明确的拓扑模式,为识别结构相关大分子表面的功能重要区域提供了一个强大的工具。利用这种方法,我们确定了胆碱酯酶(ChEs)和一组神经细胞粘附蛋白共有的一个功能区域,由于它们具有高度的序列相似性,这些神经细胞粘附蛋白被认为在结构上与胆碱酯酶相关,但缺乏关键的催化活性丝氨酸。对乙酰胆碱酯酶活性位点入口周围区域以及粘附蛋白的类胆碱酯酶结构域类似区域的静电表面势进行定量分析,结果显示出很好的相关性。这些发现,结合之前涉及该相同区域可能在胆碱酯酶细胞识别功能方面的证据进行研究,使我们定义了一类粘附蛋白,我们将其命名为“电触觉蛋白”。