Bré M H, Redeker V, Vinh J, Rossier J, Levilliers N
Laboratoire de Biologie Cellulaire 4, CNRS URA 2227, Université Paris-Sud, 91405 Orsay Cedex, France.
Mol Biol Cell. 1998 Sep;9(9):2655-65. doi: 10.1091/mbc.9.9.2655.
Polyglycylation, a posttranslational modification of tubulin, was discovered in the highly stable axonemal microtubules of Paramecium cilia where it involves the lateral linkage of up to 34 glycine units per tubulin subunit. The observation of this type of posttranslational modification mainly in axonemes raises the question as to its relationship with axonemal organization and with microtubule stability. This led us to investigate the glycylation status of cytoplasmic microtubules that correspond to the dynamic microtubules in Paramecium. Two anti-glycylated tubulin monoclonal antibodies (mAbs), TAP 952 and AXO 49, are shown here to exhibit different affinities toward mono- and polyglycylated synthetic tubulin peptides. Using immunoblotting and mass spectrometry, we show that cytoplasmic tubulin is glycylated. In contrast to the highly glycylated axonemal tubulin, which is recognized by the two mAbs, cytoplasmic tubulin reacts exclusively with TAP 952, and the alpha- and beta- tubulin subunits are modified by only 1-5 and 2-9 glycine units, respectively. Our analyses suggest that most of the cytoplasmic tubulin contains side chain lengths of 1 or 2 glycine units distributed on several glycylation sites. The subcellular partition of distinct polyglycylated tubulin isoforms between cytoplasmic and axonemal compartments implies the existence of regulatory mechanisms for glycylation. By following axonemal tubulin immunoreactivity with anti-glycylated tubulin mAbs upon incubation with a Paramecium cellular extract, the presence of a deglycylation enzyme is revealed in the cytoplasm of this organism. These observations establish that polyglycylation is reversible and indicate that, in vivo, an equilibrium between glycylating and deglycylating enzymes might be responsible for the length of the oligoglycine side chains of tubulin.
多聚甘氨酰化是微管蛋白的一种翻译后修饰,在草履虫纤毛高度稳定的轴丝微管中被发现,每个微管蛋白亚基最多可连接34个甘氨酸单位形成侧链。这种翻译后修饰主要在轴丝中被观察到,这就引发了关于它与轴丝结构以及微管稳定性之间关系的问题。这促使我们去研究草履虫中与动态微管相对应的细胞质微管的甘氨酰化状态。在此展示了两种抗甘氨酰化微管蛋白单克隆抗体(mAb),即TAP 952和AXO 49,它们对单甘氨酰化和多甘氨酰化的合成微管蛋白肽表现出不同的亲和力。通过免疫印迹和质谱分析,我们表明细胞质微管蛋白是被甘氨酰化的。与能被这两种单克隆抗体识别的高度甘氨酰化的轴丝微管蛋白不同,细胞质微管蛋白仅与TAP 952反应,并且α-和β-微管蛋白亚基分别仅被1 - 5个和2 - 9个甘氨酸单位修饰。我们的分析表明,大多数细胞质微管蛋白含有分布在多个甘氨酰化位点上的侧链长度为1或2个甘氨酸单位的情况。不同多甘氨酰化微管蛋白异构体在细胞质和轴丝区室之间的亚细胞分布意味着存在甘氨酰化的调控机制。在用草履虫细胞提取物孵育后,通过抗甘氨酰化微管蛋白单克隆抗体追踪轴丝微管蛋白的免疫反应性,发现该生物体的细胞质中存在一种去甘氨酰化酶。这些观察结果证实多聚甘氨酰化是可逆的,并表明在体内,甘氨酰化酶和去甘氨酰化酶之间的平衡可能决定了微管蛋白寡甘氨酸侧链的长度。