Suppr超能文献

在有乙醇存在的情况下,微粒体乙醛氧化作用可忽略不计。

Microsomal acetaldehyde oxidation is negligible in the presence of ethanol.

作者信息

Wu Y S, Salmela K S, Lieber C S

机构信息

Alcohol Research and Treatment Center, Bronx Veterans Affairs Medical Center, New York 10468-3922, USA.

出版信息

Alcohol Clin Exp Res. 1998 Aug;22(5):1165-9.

PMID:9726291
Abstract

The microsomal ethanol oxidizing system (MEOS), inducible by ethanol and acetone, oxidizes ethanol to acetaldehyde, which causes many toxic effects associated with excess ethanol. Recent studies reported that rat liver microsomes also oxidize acetaldehyde, thereby challenging the validity of the assessment of MEOS activity by measuring acetaldehyde production and suggesting that MEOS activity results in the accumulation not of acetaldehyde but, rather, of its less toxic metabolite, acetate. To address these issues, we compared both metabolic rates of ethanol and acetaldehyde and the effect of ethanol on the acetaldehyde metabolism. Liver microsomes were prepared from Sprague-Dawley rats induced either with acetone for 3 days or ethanol for 3 weeks. NADPH-dependent acetaldehyde (300 microM) metabolism was measured in two ways: (1) by detection of acetaldehyde disappearance by headspace gas chromatography, and (2) by assessment of acetaldehyde oxidation by liquid scintillation counting of acetate formed from [1,2-14C]acetaldehyde. Ethanol (50 mM) oxidation was measured by gas chromatography. In acetone- and ethanol-induced rat liver microsomes, the acetaldehyde disappearance (p < 0.0001) and oxidation (p < 0.0001) rates were both significantly increased. The rates of acetaldehyde oxidation paralleled those of p-nitrophenol hydroxylation (r = 0.974, p < 0.0001), with a Km of 82+/-14 microM and a Vmax of 4.8+/-0.5 nmol/min/mg protein in acetone-induced microsomes. Acetaldehyde disappearance in acetone-induced microsomes and acetaldehyde oxidation in acetone-induced and ethanol-induced microsomes were significantly lower than the corresponding ethanol oxidation, with rates (nmol/min/mg protein) of 4.6+/-0.6 versus 9.0+/-0.8 (p < 0.005), 4.4+/-0.3 versus 9.1+/-0.5 (p < 0.0005), and 14.0+/-0.9 versus 19.5+/-1.8 (p < 0.05), respectively. The presence of 50 mM ethanol decreased this metabolism to 0.9+/-0.3 (p < 0.005), 0.5+/-0.1 (p < 0.001), and 1.8+/-0.3 (p < 0.001), resulting in rates of acetaldehyde metabolism of only 9.8+/-3.2%, 6.0+/-0.5%, and 9.5+/-1.2% (respectively) of those of ethanol oxidation. In conclusion, rat liver microsomes oxidize acetaldehyde at much lower rates than ethanol, and this acetaldehyde metabolism is strikingly inhibited by ethanol. Accordingly, acetaldehyde formation provides an accurate assessment of MEOS activity. Furthermore, because acetaldehyde production vastly exceeds its oxidation, the net result of MEOS activity is the accumulation of this toxic metabolite.

摘要

微粒体乙醇氧化系统(MEOS)可被乙醇和丙酮诱导,它将乙醇氧化为乙醛,而乙醛会引发许多与乙醇过量相关的毒性作用。最近的研究报道,大鼠肝脏微粒体也能氧化乙醛,从而对通过测量乙醛生成量来评估MEOS活性的有效性提出了质疑,并表明MEOS活性导致积累的不是乙醛,而是毒性较小的代谢产物乙酸盐。为了解决这些问题,我们比较了乙醇和乙醛的代谢速率以及乙醇对乙醛代谢的影响。从经丙酮诱导3天或乙醇诱导3周的Sprague-Dawley大鼠制备肝脏微粒体。通过两种方法测量NADPH依赖性乙醛(300微摩尔)的代谢:(1)通过顶空气相色谱法检测乙醛消失情况,(2)通过对由[1,2-¹⁴C]乙醛形成的乙酸盐进行液体闪烁计数来评估乙醛氧化。通过气相色谱法测量乙醇(50毫摩尔)的氧化。在丙酮和乙醇诱导的大鼠肝脏微粒体中,乙醛消失率(p < 0.0001)和氧化率(p < 0.0001)均显著增加。乙醛氧化速率与对硝基苯酚羟化速率平行(r = 0.974,p < 0.0001),在丙酮诱导的微粒体中,Km为82±14微摩尔,Vmax为4.8±0.5纳摩尔/分钟/毫克蛋白。丙酮诱导的微粒体中乙醛消失以及丙酮诱导和乙醇诱导的微粒体中乙醛氧化均显著低于相应的乙醇氧化,速率(纳摩尔/分钟/毫克蛋白)分别为4.6±0.6对9.0±0.8(p < 0.005)、4.4±0.3对9.1±0.5(p < 0.0005)和14.0±0.9对19.5±1.8(p < 0.05)。5毫摩尔乙醇的存在使这种代谢降至0.9±0.3(p < 0.005)、0.5±0.1(p < 0.001)和1.8±0.3(p < 0.001),导致乙醛代谢速率仅为乙醇氧化速率的9.8±3.2%、6.0±0.5%和9.5±1.2%(分别)。总之,大鼠肝脏微粒体氧化乙醛的速率远低于乙醇,并且这种乙醛代谢受到乙醇的显著抑制。因此,乙醛生成可准确评估MEOS活性。此外,由于乙醛生成量大大超过其氧化量,MEOS活性的最终结果是这种有毒代谢产物的积累。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验