Suppr超能文献

白腐真菌黄孢原毛平革菌对3,4-二氯苯胺矿化作用中的一种新中间体。

A new intermediate in the mineralization of 3,4-dichloroaniline by the white rot fungus Phanerochaete chrysosporium.

作者信息

Sandermann H, Heller W, Hertkorn N, Hoque E, Pieper D, Winkler R

机构信息

Institut für Biochemische Pflanzenpathologie, GSF-Forschungszentrum für Umwelt und Gesundheit GmbH, D-85764 Oberschleissheim, Germany.

出版信息

Appl Environ Microbiol. 1998 Sep;64(9):3305-12. doi: 10.1128/AEM.64.9.3305-3312.1998.

Abstract

Phanerochaete chrysosporium ATCC 34541 has been reported to be unable to mineralize 3,4-dichloroaniline (DCA). However, high mineralization is now shown to occur when a fermentation temperature of 37 degrees and gassing with oxygen are used. Mineralization did not correlate with lignin peroxidase activity. The latter was high under C limitation and low under N limitation, whereas the reverse was true for mineralization. The kinetics of DCA metabolism was studied in low-N and low-C and C- and N-rich culture media by metabolite analysis and 14CO2 determination. In all cases, DCA disappeared within 2 days, and a novel highly polar conjugate termed DCAX accumulated in the growth medium. This metabolite was a dead-end product under C and N enrichment. In oxygenated low-C medium and in much higher yield in oxygenated low-N medium, DCAX was converted to DCA-succinimide and then mineralized. DCAX was purified by high-performance liquid chromatography and identified as N-(3,4-dichlorophenyl)-alpha-ketoglutaryl-delta-amide by high-performance liquid chromatography and mass spectroscopy, gas chromatography and mass spectroscopy, and nuclear magnetic resonance spectroscopy. The formation of conjugate intermediates is proposed to facilitate mineralization because the sensitive amino group of DCA needs protection so that ring cleavage rather than oligomerization can occur.

摘要

据报道,黄孢原毛平革菌ATCC 34541无法将3,4-二氯苯胺(DCA)矿化。然而,现在发现当发酵温度为37摄氏度并通入氧气时,会发生高度矿化。矿化与木质素过氧化物酶活性无关。后者在碳限制条件下较高,在氮限制条件下较低,而矿化情况则相反。通过代谢物分析和14CO2测定,研究了低氮、低碳以及富含碳和氮的培养基中DCA的代谢动力学。在所有情况下,DCA在2天内消失,一种名为DCAX的新型高极性共轭物在生长培养基中积累。这种代谢物在碳和氮富集条件下是一种终产物。在充氧的低碳培养基中,以及在充氧的低氮培养基中产量更高的情况下,DCAX会转化为DCA-琥珀酰亚胺,然后被矿化。通过高效液相色谱法纯化DCAX,并通过高效液相色谱法和质谱法、气相色谱法和质谱法以及核磁共振光谱法将其鉴定为N-(3,4-二氯苯基)-α-酮戊二酰-δ-酰胺。有人提出共轭中间体的形成有助于矿化,因为DCA的敏感氨基需要保护,以便发生环裂解而不是寡聚化。

相似文献

1
A new intermediate in the mineralization of 3,4-dichloroaniline by the white rot fungus Phanerochaete chrysosporium.
Appl Environ Microbiol. 1998 Sep;64(9):3305-12. doi: 10.1128/AEM.64.9.3305-3312.1998.
3
Tween 80 enhanced TNT mineralization by Phanerochaete chrysosporium.
Can J Microbiol. 2000 Feb;46(2):110-8. doi: 10.1139/w99-126.
4
Biodegradation of TNT (2,4,6-trinitrotoluene) by Phanerochaete chrysosporium.
Appl Environ Microbiol. 1990 Jun;56(6):1666-71. doi: 10.1128/aem.56.6.1666-1671.1990.
5
Oligomers of 4-chloroaniline are intermediates formed during its biodegradation by Phanerochaete chrysosporium.
FEMS Microbiol Lett. 1993 Mar 1;107(2-3):337-42. doi: 10.1111/j.1574-6968.1993.tb06054.x.
6
Degradation of CL-20 by white-rot fungi.
Chemosphere. 2006 Mar;63(1):175-81. doi: 10.1016/j.chemosphere.2005.06.052. Epub 2005 Aug 19.
7
Biodegradation of DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane] by the white rot fungus Phanerochaete chrysosporium.
Appl Environ Microbiol. 1987 Sep;53(9):2001-8. doi: 10.1128/aem.53.9.2001-2008.1987.
9
Biodegradation of the high explosive hexanitrohexaazaiso-wurtzitane (CL-20).
Int J Environ Res Public Health. 2009 Apr;6(4):1371-92. doi: 10.3390/ijerph6041371. Epub 2009 Apr 9.
10
Biodegradation of gaseous chlorobenzene by white-rot fungus Phanerochaete chrysosporium.
Biomed Environ Sci. 2008 Dec;21(6):474-8. doi: 10.1016/S0895-3988(09)60005-2.

引用本文的文献

1
Uptake and decomposition of the herbicide propanil in the plant Bidens pilosa L. dominating in the Yangtze Three Gorges Reservoir (TGR), China.
Environ Sci Pollut Res Int. 2017 Apr;24(12):11141-11153. doi: 10.1007/s11356-016-6068-8. Epub 2016 Feb 5.
2
3
Hydroxylation of the herbicide isoproturon by fungi isolated from agricultural soil.
Appl Environ Microbiol. 2005 Dec;71(12):7927-32. doi: 10.1128/AEM.71.12.7927-7932.2005.

本文引用的文献

1
Mechanisms white rot fungi use to degrade pollutants.
Environ Sci Technol. 1994 Feb 1;28(2):78A-87A. doi: 10.1021/es00051a724.
5
Oxidation of persistent environmental pollutants by a white rot fungus.
Science. 1985 Jun 21;228(4706):1434-6. doi: 10.1126/science.3925550.
6
Enzymatic "combustion": the microbial degradation of lignin.
Annu Rev Microbiol. 1987;41:465-505. doi: 10.1146/annurev.mi.41.100187.002341.
7
Degradation of xenobiotics by white rot fungi.
Rev Environ Contam Toxicol. 1991;122:111-52. doi: 10.1007/978-1-4612-3198-1_4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验