Sandermann H, Heller W, Hertkorn N, Hoque E, Pieper D, Winkler R
Institut für Biochemische Pflanzenpathologie, GSF-Forschungszentrum für Umwelt und Gesundheit GmbH, D-85764 Oberschleissheim, Germany.
Appl Environ Microbiol. 1998 Sep;64(9):3305-12. doi: 10.1128/AEM.64.9.3305-3312.1998.
Phanerochaete chrysosporium ATCC 34541 has been reported to be unable to mineralize 3,4-dichloroaniline (DCA). However, high mineralization is now shown to occur when a fermentation temperature of 37 degrees and gassing with oxygen are used. Mineralization did not correlate with lignin peroxidase activity. The latter was high under C limitation and low under N limitation, whereas the reverse was true for mineralization. The kinetics of DCA metabolism was studied in low-N and low-C and C- and N-rich culture media by metabolite analysis and 14CO2 determination. In all cases, DCA disappeared within 2 days, and a novel highly polar conjugate termed DCAX accumulated in the growth medium. This metabolite was a dead-end product under C and N enrichment. In oxygenated low-C medium and in much higher yield in oxygenated low-N medium, DCAX was converted to DCA-succinimide and then mineralized. DCAX was purified by high-performance liquid chromatography and identified as N-(3,4-dichlorophenyl)-alpha-ketoglutaryl-delta-amide by high-performance liquid chromatography and mass spectroscopy, gas chromatography and mass spectroscopy, and nuclear magnetic resonance spectroscopy. The formation of conjugate intermediates is proposed to facilitate mineralization because the sensitive amino group of DCA needs protection so that ring cleavage rather than oligomerization can occur.
据报道,黄孢原毛平革菌ATCC 34541无法将3,4-二氯苯胺(DCA)矿化。然而,现在发现当发酵温度为37摄氏度并通入氧气时,会发生高度矿化。矿化与木质素过氧化物酶活性无关。后者在碳限制条件下较高,在氮限制条件下较低,而矿化情况则相反。通过代谢物分析和14CO2测定,研究了低氮、低碳以及富含碳和氮的培养基中DCA的代谢动力学。在所有情况下,DCA在2天内消失,一种名为DCAX的新型高极性共轭物在生长培养基中积累。这种代谢物在碳和氮富集条件下是一种终产物。在充氧的低碳培养基中,以及在充氧的低氮培养基中产量更高的情况下,DCAX会转化为DCA-琥珀酰亚胺,然后被矿化。通过高效液相色谱法纯化DCAX,并通过高效液相色谱法和质谱法、气相色谱法和质谱法以及核磁共振光谱法将其鉴定为N-(3,4-二氯苯基)-α-酮戊二酰-δ-酰胺。有人提出共轭中间体的形成有助于矿化,因为DCA的敏感氨基需要保护,以便发生环裂解而不是寡聚化。