Suppr超能文献

大鼠致癌物的结构特征及其相关作用机制的鉴定。

Identification of structural features and associated mechanisms of action for carcinogens in rats.

作者信息

Cunningham A R, Klopman G, Rosenkranz H S

机构信息

Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15238, USA.

出版信息

Mutat Res. 1998 Aug 31;405(1):9-27. doi: 10.1016/s0027-5107(98)00123-7.

Abstract

A set of chemicals tested for carcinogenicity in rats that have been analyzed in the Carcinogenic Potency Database (CPDB) was subjected to CASE/MULTICASE (a computer-automated structure evaluation system) structure-activity relationship (SAR) analyses. This SAR system identifies structural features of chemicals in a learning set that are associated with a predefined activity and produces an SAR model based on these characteristics. The rat CPDB used in this study consisted of 745 chemicals, 383 of which are carcinogens, 14 marginally active carcinogens (i.e., chemicals that require a relatively high dose to induce carcinogenesis) and 348 are non-carcinogens. In an internal prediction analysis where CASE/MULTICASE 'predicted' the activity of chemicals in the learning set, the system was able to achieve a concordance between experimental and predicted results of 95%. This indicates that the program is able to adequately assess the chemicals in the database. In a 10-fold cross-validation study where 10 disjoint sets of 10% of the chemicals were removed from the database and the remaining 90% of the chemicals were used as a learning set, CASE/MULTICASE was able to achieve a concordance between experimental and predicted results of 64%. Using a modified validation process designed to investigate the predictivity of a more focused SAR model, the system was able to achieve a concordance of 71% between experimental and predicted results. Among the major biophores identified by CASE/MULTICASE as associated with cancer causation in rats, several are derived from electrophilic or potentially electrophilic compounds (e.g., aromatic amines, nitrogen mustards, isocyanates, epoxides). Other biophores however are derived from chemicals seemingly devoid of actual or potential DNA-reactivity and as such may represent structural features of non-genotoxic carcinogens.

摘要

一组已在致癌强度数据库(CPDB)中进行过致癌性分析的用于大鼠致癌性测试的化学物质,接受了CASE/MULTICASE(一种计算机自动化结构评估系统)的构效关系(SAR)分析。这个SAR系统识别学习集中与预定义活性相关的化学物质的结构特征,并基于这些特征生成一个SAR模型。本研究中使用的大鼠CPDB包含745种化学物质,其中383种是致癌物,14种是边缘活性致癌物(即需要相对高剂量才能诱导致癌的化学物质),348种是非致癌物。在一项内部预测分析中,CASE/MULTICASE“预测”了学习集中化学物质的活性,该系统能够使实验结果和预测结果的一致性达到95%。这表明该程序能够充分评估数据库中的化学物质。在一项10折交叉验证研究中,从数据库中移除10%的化学物质组成的10个不相交集合,其余90%的化学物质用作学习集,CASE/MULTICASE能够使实验结果和预测结果的一致性达到64%。使用一种经过修改的验证过程来研究一个更具针对性的SAR模型的预测能力,该系统能够使实验结果和预测结果的一致性达到71%。在CASE/MULTICASE确定的与大鼠癌症病因相关的主要生物活性基团中,有几个源自亲电或潜在亲电化合物(如芳香胺、氮芥、异氰酸酯、环氧化物)。然而,其他生物活性基团源自似乎没有实际或潜在DNA反应性的化学物质,因此可能代表非遗传毒性致癌物的结构特征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验