Tovar A A, Casperson L W
Department of Physics and Engineering Physics, Murray State University, Kentucky 42071-0009, USA.
J Opt Soc Am A Opt Image Sci Vis. 1998 Sep;15(9):2425-32. doi: 10.1364/josaa.15.002425.
Hermite-sinusoidal-Gaussian solutions to the wave equation have recently been obtained. In the limit of large Hermite-Gaussian beam size, the sinusoidal factors are dominant and reduce to the conventional modes of a rectangular waveguide. In the opposite limit the beams reduce to the familiar Hermite-Gaussian form. The propagation of these beams is examined in detail, and resonators are designed that will produce them. As an example, a special resonator is designed to produce hyperbolic-sine-Gaussian beams. This ring resonator contains a hyperbolic-cosine-Gaussian apodized aperture. The beam mode has finite energy and is perturbation stable.
最近已获得波动方程的厄米 - 正弦 - 高斯解。在厄米 - 高斯光束尺寸很大的极限情况下,正弦因子起主导作用并简化为矩形波导的传统模式。在相反的极限情况下,光束简化为熟悉的厄米 - 高斯形式。详细研究了这些光束的传播,并设计了能产生它们的谐振器。例如,设计了一种特殊的谐振器来产生双曲正弦 - 高斯光束。这个环形谐振器包含一个双曲余弦 - 高斯切趾孔径。光束模式具有有限能量且微扰稳定。