Suppr超能文献

心动周期和心率的分形维数与近似熵:清醒与睡眠状态的差异及方法学问题

Fractal dimension and approximate entropy of heart period and heart rate: awake versus sleep differences and methodological issues.

作者信息

Yeragani V K, Sobolewski E, Jampala V C, Kay J, Yeragani S, Igel G

机构信息

116-A, Veterans Affairs Medical Center, 4100 West Third Street, Dayton, OH 45428, USA.

出版信息

Clin Sci (Lond). 1998 Sep;95(3):295-301.

PMID:9730848
Abstract
  1. Investigations that assess cardiac autonomic function include non-linear techniques such as fractal dimension and approximate entropy in addition to the common time and frequency domain measures of both heart period and heart rate. This article evaluates the differences in using heart rate versus heart period to estimate fractal dimensions and approximate entropies of these time series.2. Twenty-four-hour ECG was recorded in 23 normal subjects using Holter records. Time series of heart rate and heart period were analysed using fractal dimensions, approximate entropies and spectral analysis for the quantification of absolute and relative heart period variability in bands of ultra low (<0.0033 Hz), very low (0. 0033-0.04 Hz), low (0.04-0.15 Hz) and high (0.15-0.5 Hz) frequency.3. Linear detrending of the time series did not significantly change the fractal dimension or approximate entropy values. We found significant differences in the analyses using heart rate versus heart period between waking up and sleep conditions for fractal dimensions, approximate entropies and absolute spectral powers, especially for the power in the band of 0.0033-0.5 Hz. Log transformation of the data revealed identical fractal dimension values for both heart rate and heart period. Mean heart period correlated significantly better with fractal dimensions and approximate entropies of heart period than did corresponding heart rate measures.4. Studies using heart period measures should take the effect of mean heart period into account even for the analyses of fractal dimension and approximate entropy. As the sleep-awake differences in fractal dimensions and approximate entropies are different between heart rate and heart period, the results should be interpreted accordingly.
摘要
  1. 评估心脏自主神经功能的研究包括非线性技术,如分形维数和近似熵,此外还有常见的心动周期和心率的时域和频域测量方法。本文评估了使用心率与心动周期来估计这些时间序列的分形维数和近似熵的差异。

  2. 使用动态心电图记录器对23名正常受试者进行了24小时心电图记录。使用分形维数、近似熵和频谱分析对心率和心动周期的时间序列进行分析,以量化超低频率(<0.0033Hz)、极低频率(0.0033 - 0.04Hz)、低频率(0.04 - 0.15Hz)和高频率(0.15 - 0.5Hz)频段内的绝对和相对心动周期变异性。

  3. 时间序列的线性去趋势处理并未显著改变分形维数或近似熵值。我们发现,在清醒和睡眠状态下,使用心率与心动周期进行分析时,分形维数、近似熵和绝对频谱功率存在显著差异,尤其是在0.0033 - 0.5Hz频段的功率。数据的对数变换显示心率和心动周期的分形维数相同。平均心动周期与心动周期的分形维数和近似熵的相关性显著优于相应的心率测量值。

  4. 即使在分析分形维数和近似熵时,使用心动周期测量的研究也应考虑平均心动周期的影响。由于心率和心动周期的分形维数和近似熵在睡眠 - 清醒状态下的差异不同,结果应相应地进行解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验