Montane MH, Tardy F, Kloppstech K, Havaux M
Commissariat a l'Energie Atomique/Cadarache, Departement d'Ecophysiologie Vegetale et de Microbiologie, Laboratoire de Radiobiologie Vegetale (M.-H.M.).
Plant Physiol. 1998 Sep;118(1):227-35. doi: 10.1104/pp.118.1.227.
Barley (Hordeum vulgare L.) plants were grown at different photon flux densities ranging from 100 to 1800 &mgr;mol m-2 s-1 in air and/or in atmospheres with reduced levels of O2 and CO2. Low O2 and CO2 partial pressures allowed plants to grow under high photosystem II (PSII) excitation pressure, estimated in vivo by chlorophyll fluorescence measurements, at moderate photon flux densities. The xanthophyll-cycle pigments, the early light-inducible proteins, and their mRNA accumulated with increasing PSII excitation pressure irrespective of the way high excitation pressure was obtained (high-light irradiance or decreased CO2 and O2 availability). These findings indicate that the reduction state of electron transport chain components could be involved in light sensing for the regulation of nuclear-encoded chloroplast gene expression. In contrast, no correlation was found between the reduction state of PSII and various indicators of the PSII light-harvesting system, such as the chlorophyll a-to-b ratio, the abundance of the major pigment-protein complex of PSII (LHCII), the mRNA level of LHCII, the light-saturation curve of O2 evolution, and the induced chlorophyll-fluorescence rise. We conclude that the chlorophyll antenna size of PSII is not governed by the redox state of PSII in higher plants and, consequently, regulation of early light-inducible protein synthesis is different from that of LHCII.
将大麦(Hordeum vulgare L.)植株置于空气和/或氧气与二氧化碳水平降低的大气环境中,在100至1800 μmol m-2 s-1的不同光子通量密度下生长。低氧分压和二氧化碳分压使植株能够在中等光子通量密度下,在高光系统II(PSII)激发压力下生长,该激发压力通过叶绿素荧光测量在体内进行估算。无论通过何种方式获得高激发压力(高光辐照度或降低二氧化碳和氧气的可利用性),叶黄素循环色素、早期光诱导蛋白及其mRNA都会随着PSII激发压力的增加而积累。这些发现表明,电子传递链组分的还原状态可能参与了对核编码叶绿体基因表达调控的光感知过程。相比之下,未发现PSII的还原状态与PSII光捕获系统的各种指标之间存在相关性,这些指标包括叶绿素a与b的比率、PSII主要色素蛋白复合体(LHCII)的丰度、LHCII的mRNA水平、氧气释放的光饱和曲线以及诱导的叶绿素荧光上升。我们得出结论,在高等植物中,PSII的叶绿素天线大小不受PSII氧化还原状态的控制,因此,早期光诱导蛋白合成的调控与LHCII的调控不同。