Suppr超能文献

富士山型适应度景观上有限随机突变体中最适者的适应性行走

Adaptive Walks by the Fittest among Finite Random Mutants on a Mt. Fuji-type Fitness Landscape.

作者信息

Aita T, Husimi Y

机构信息

Department of Functional Materials Science, Saitama University, Urawa 338, Japan

出版信息

J Theor Biol. 1998 Aug 7;193(3):383-405. doi: 10.1006/jtbi.1998.0709.

Abstract

Based on the theory of fitness distributions on a Mt. Fuji-type fitness landscape in a multivalued sequence space (Aita & Husimi, 1996 J. theor. Biol. 182, 469-485), we investigated the properties of adaptive walks on the ideal landscape in the case of a cloning-screening-type evolution experiment. We modeled that an adaptive walk is performed by repetition of the evolution cycle composed of the mutagenesis process generating random d-fold point mutants of population size N and the selection process looking for the fittest mutant among them. While an adaptive walk is described in a sequence space, we simplified the description as follows. We mapped the landscape in an x-y plane, where x and y represent a normalized Hamming distance from the global peak and a scaled fitness, respectively. An adaptive walk is described as a trajectory in the plane. The most certain step for a walker to move in a single evolution cycle is represented by a vector in the plane. Then, a walker moves along the streams in the vector field determined by d and N. The walker performs fast hill-climbing until a "trap-line", which traverses the plane. Subsequently, the walker is likely to get trapped in an "apparent local optimum". To continue the walk, apparent local optima must be eliminated by resetting d and N larger. Therefore, for the fastest walk, the optimal schedule of the d-values (initially large d, then small d) is effective, although the economical walk with high cost-performance is different. If a real landscape is just of the Mt. Fuji-type, the walk with the highest cost-performance will be performed by scanning site-directed optimization through all sites. However, in the case of the rough Mt. Fuji-type, which seems to be more realistic, the walking method we have examined will be effective for a walker to sidestep true local optima.Copyright 1998 Academic Press

摘要

基于多值序列空间中富士山型适应度景观的适应度分布理论(Aita和Husimi,1996年,《理论生物学杂志》182卷,469 - 485页),我们研究了克隆筛选型进化实验中理想景观上的适应性行走特性。我们模拟了适应性行走是通过重复由产生群体大小为N的随机d倍点突变的诱变过程和从其中寻找最适应突变体的选择过程组成的进化周期来进行的。虽然适应性行走是在序列空间中描述的,但我们将描述简化如下。我们将景观映射到x - y平面,其中x和y分别表示距全局峰值的归一化汉明距离和缩放后的适应度。适应性行走被描述为平面中的一条轨迹线。行走者在单个进化周期中移动的最确定步骤由平面中的一个向量表示。然后,行走者沿着由d和N确定的向量场中的流移动。行走者进行快速爬山,直到一条“陷阱线”横穿平面。随后,行走者很可能被困在一个“表观局部最优”中。为了继续行走,必须通过将d和N设置得更大来消除表观局部最优。因此,对于最快的行走,d值的最优调度(最初大d,然后小d)是有效的,尽管具有高性价比的经济行走方式不同。如果实际景观恰好是富士山型,那么性价比最高的行走将通过对所有位点进行定点优化扫描来进行。然而,在似乎更现实的粗糙富士山型情况下,我们所研究的行走方法对于行走者避开真正的局部最优将是有效的。版权所有1998年学术出版社

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验