Woodcock G, Higgs P G
Department of Physics, University of Sheffield, U.K.
J Theor Biol. 1996 Mar 7;179(1):61-73. doi: 10.1006/jtbi.1996.0049.
A theory for evolution of either gene sequences or molecular sequences must take into account that a population consists of a finite number of individuals with related sequences. Such a population will not behave in the deterministic way expected for an infinite population, nor will it behave as in adaptive walk models, where the whole of the population is represented by a single sequence. Here we study a model for evolution of population in a fitness landscape with a single fitness peak. This landscape is simple enough for finite size population effects to be studied in detail. Each of the N individuals in the population is represented by a sequence of L genes which may either be advantageous or disadvantageous. The fitness of an individual with k disadvantageous genes is Wk = (1-s)k, where s determines the strength of selection. In the limit L-->infinity, the model reduces to the problem of Muller's Ratchet: the population moves away from the fitness peak at a constant rate due to the accumulation of disadvantageous mutations. For finite length sequences, a population placed initially at the fitness peak will evolve away from the peak until a balance is reached between mutation and selection. From then on the population will wander through a spherical shell in sequence space at a constant mean Hamming distance
一个关于基因序列或分子序列进化的理论必须考虑到,一个种群是由有限数量的具有相关序列的个体组成。这样的种群不会像无限种群那样以确定性的方式表现,也不会像适应性行走模型那样表现,在适应性行走模型中,整个种群由单个序列表示。在这里,我们研究了在具有单个适应度峰值的适应度景观中种群进化的模型。这种景观足够简单,以便能够详细研究有限规模种群的影响。种群中的(N)个个体中的每一个都由(L)个基因的序列表示,这些基因可能是有利的或不利的。具有(k)个不利基因的个体的适应度为(W_k = (1 - s)^k),其中(s)决定选择强度。在(L\to\infty)的极限情况下,该模型简化为穆勒棘轮问题:由于不利突变的积累,种群以恒定速率远离适应度峰值。对于有限长度的序列,最初置于适应度峰值的种群将从峰值进化离开,直到突变和选择之间达到平衡。从那时起,种群将在序列空间中的一个球壳内徘徊,与最优序列的平均汉明距离为(\langle k\rangle)。我们给出了一个关于(\langle k\rangle)如何依赖于(N)、(L)、(s)和突变率(u)的近似理论。发现这与数值模拟结果吻合得很好。选择对小种群的效果较差,所以(\langle k\rangle)随着(N)的减小而增加。我们的模拟还表明,相隔(t)代的基因序列之间的平均重叠形式为(Q(t) = Q_{\infty} + (Q_0 - Q_{\infty})\exp(-2ut)),这意味着球壳内的进化速率与选择强度无关。我们给出了一个可以精确求解的简化模型,对于该模型(Q(t))恰好具有这种形式。然后我们考虑在保持(U = uL)恒定的情况下(L\to\infty)的极限情况。我们假设每个突变可能以概率(p)是有利的,或以概率(1 - p)是不利的。我们表明,对于(p)小于临界值(p_c),对于所有(U)值种群的适应度都会降低,而对于(p_c < p < 1/2),对于小的(U)值种群的适应度会增加,对于大的(U)值种群的适应度会降低。在这种情况下,存在一个最优的非零(U)值,在该值下适应度增加最快,并且自然选择将有利于具有非零突变率的物种。