Suppr超能文献

用于生理信号分析的随机复杂度度量

Stochastic complexity measures for physiological signal analysis.

作者信息

Rezek I A, Roberts S J

机构信息

Department of Electrical and Electronic Engineering, Imperial College of Science, Technology, and Medicine, London, U.K.

出版信息

IEEE Trans Biomed Eng. 1998 Sep;45(9):1186-91. doi: 10.1109/10.709563.

Abstract

Traditional feature extraction methods describe signals in terms of amplitude and frequency. This paper takes a paradigm shift and investigates four stochastic-complexity features. Their advantages are demonstrated on synthetic and physiological signals; the latter recorded during periods of Cheyne-Stokes respiration, anesthesia, sleep, and motor-cortex investigation.

摘要

传统的特征提取方法根据幅度和频率来描述信号。本文进行了范式转变,研究了四种随机复杂性特征。它们的优势在合成信号和生理信号上得到了证明;后者是在潮式呼吸、麻醉、睡眠和运动皮层研究期间记录的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验