Torres Felipe A, Otero Mónica, Lea-Carnall Caroline A, Cabral Joana, Weinstein Alejandro, El-Deredy Wael
Departamento de Computación e Industrias, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca, Chile.
Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile.
Sci Rep. 2024 Dec 28;14(1):30726. doi: 10.1038/s41598-024-80510-2.
Multi-state metastability in neuroimaging signals reflects the brain's flexibility to transition between network configurations in response to changing environments or tasks. We modeled these dynamics with a Kuramoto network of 90 nodes oscillating at an intrinsic frequency of 40 Hz, interconnected using human brain structural connectivity strengths and delays. We simulated this model for 30 min to generate multi-state metastability. We identified global coupling and delay parameters that maximize spectral entropy, a proxy for multi-state metastability. At this operational point, multiple frequency-specific coherent sub-networks spontaneously emerge across oscillatory modes, persisting for periods between 140 and 4300 ms, reflecting flexible and sustained dynamic states. The topography of these sub-networks aligns with empirical resting-state neuroimaging data. Additionally, periodic components of the EEG spectra from young healthy participants correlate with maximal multi-state metastability, while dynamics away from this point correlate with sleep and anesthesia spectra. Our findings suggest that multi-state metastable functional dynamics observed in empirical data emerge from specific interactions of structural topography and connection delays, providing a platform to study mechanisms underlying flexible dynamics of cognition.
神经成像信号中的多状态亚稳定性反映了大脑在响应不断变化的环境或任务时在网络配置之间转换的灵活性。我们用一个由90个节点组成的Kuramoto网络对这些动力学进行建模,这些节点以40Hz的固有频率振荡,利用人类大脑结构连接强度和延迟进行互连。我们对这个模型进行了30分钟的模拟以产生多状态亚稳定性。我们确定了使频谱熵最大化的全局耦合和延迟参数,频谱熵是多状态亚稳定性的一个指标。在这个工作点上,多个特定频率的相干子网在振荡模式中自发出现,持续时间在140到4300毫秒之间,反映了灵活且持续的动态状态。这些子网的拓扑结构与经验性静息态神经成像数据一致。此外,年轻健康参与者脑电图谱的周期性成分与最大多状态亚稳定性相关,而偏离这一点的动力学与睡眠和麻醉谱相关。我们的研究结果表明,在经验数据中观察到的多状态亚稳定功能动力学源自结构拓扑和连接延迟的特定相互作用,为研究认知灵活动力学的潜在机制提供了一个平台。