Suppr超能文献

Calcium release-activated calcium current (ICRAC) is a direct target for sphingosine.

作者信息

Mathes C, Fleig A, Penner R

机构信息

Max Planck Institute for Biophysical Chemistry, Department of Membrane Biophysics, Am Fassberg, D-37077, Göttingen, Germany.

出版信息

J Biol Chem. 1998 Sep 25;273(39):25020-30. doi: 10.1074/jbc.273.39.25020.

Abstract

Whole cell patch-clamp recordings were made to study the regulation of the store-operated calcium release-activated calcium current (ICRAC) by metabolites involved in the sphingomyelin pathway in RBL-2H3 cells. Sphingosine, a regulator of cell growth, inhibits ICRAC completely within 200 s and independently from conversion to either sphingosine 1-phosphate or ceramide. Structural analogs of sphingosine, including N,N-dimethylsphingosine, DL-threo-dihydrosphingosine, and N-acetylsphingosine (C2-ceramide) also block ICRAC. This effect is always accompanied by an elevation of whole cell membrane capacitance. These sphingolipids appear, therefore, to accumulate in the plasma membrane and directly block ICRAC channels. Sphingosylphosphorylcholine also increases capacitance but does not inhibit ICRAC, demonstrating structural specificity and that the elevation of capacitance is necessary but not sufficient for block. Nerve growth factor, which is known to break down sphingomyelin, inhibits ICRAC, and this inhibition can be antagonized by reducing sphingosine production with L-cycloserine, suggesting that ICRAC is a physiologically relevant and direct target of sphingosine. We propose that sphingosine directly blocks ICRAC, suggesting that the sphingomyelin pathway is involved in ICRAC regulation.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验