Suppr超能文献

结肠癌的自动特征提取与识别

Automated feature extraction and identification of colon carcinoma.

作者信息

Esgiar A N, Naguib R N, Bennett M K, Murray A

机构信息

Department of Electrical and Electronic Engineering, Newcastle University, Newcastle upon Tyne, U.K.

出版信息

Anal Quant Cytol Histol. 1998 Aug;20(4):297-301.

PMID:9739412
Abstract

OBJECTIVE

To assess an automated algorithm, developed for the classification of normal and cancerous colonic mucosa, using geometric analysis of features and texture analysis.

STUDY DESIGN

Twenty-one images were analyzed, 10 from normal and 11 from cancerous mucosa. The classification was based on a regularity index dependent on shape, object orientation for establishing parallelism and five texture features derived using the co-occurrence image analysis method.

RESULTS

Geometric analysis yielded an overall classification accuracy of 80%. The corresponding sensitivity and specificity were 94% and 64%, respectively. Using texture analysis, the overall classification accuracy was 90%, with a sensitivity and specificity of 82% and 100%, respectively.

CONCLUSION

This initial study demonstrated that geometric and texture analysis techniques show promise for automated analysis of colon cancer.

摘要

目的

使用特征的几何分析和纹理分析来评估一种为正常和癌性结肠黏膜分类而开发的自动化算法。

研究设计

分析了21幅图像,其中10幅来自正常黏膜,11幅来自癌性黏膜。分类基于一个依赖于形状的规则性指数、用于建立平行性的物体方向以及使用共生图像分析方法得出的五个纹理特征。

结果

几何分析得出的总体分类准确率为80%。相应的敏感性和特异性分别为94%和64%。使用纹理分析时,总体分类准确率为90%,敏感性和特异性分别为82%和100%。

结论

这项初步研究表明,几何和纹理分析技术在结肠癌自动化分析方面显示出前景。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验