Suppr超能文献

用于骨组织建模与分类的细胞图挖掘技术:基于细胞外基质感知的方法

ECM-Aware Cell-Graph Mining for Bone Tissue Modeling and Classification.

作者信息

Bilgin Cemal Cagatay, Bullough Peter, Plopper George E, Yener Bülent

机构信息

Department of Computer Science, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.

出版信息

Data Min Knowl Discov. 2009 Oct 21;20(3):416-438. doi: 10.1007/s10618-009-0153-2.

Abstract

Pathological examination of a biopsy is the most reliable and widely used technique to diagnose bone cancer. However, it suffers from both inter- and intra- observer subjectivity. Techniques for automated tissue modeling and classification can reduce this subjectivity and increases the accuracy of bone cancer diagnosis. This paper presents a graph theoretical method, called extracellular matrix (ECM)-aware cell-graph mining, that combines the ECM formation with the distribution of cells in hematoxylin and eosin (H&E) stained histopathological images of bone tissues samples. This method can identify different types of cells that coexist in the same tissue as a result of its functional state. Thus, it models the structure-function relationships more precisely and classifies bone tissue samples accurately for cancer diagnosis. The tissue images are segmented, using the eigenvalues of the Hessian matrix, to compute spatial coordinates of cell nuclei as the nodes of corresponding cell-graph. Upon segmentation a color code is assigned to each node based on the composition of its surrounding ECM. An edge is hypothesized (and established) between a pair of nodes if the corresponding cell membranes are in physical contact and if they share the same color. Hence, multiple colored-cell-graphs coexist in a tissue each modeling a different cell-type organization. Both topological and spectral features of ECM-aware cell-graphs are computed to quantify the structural properties of tissue samples and classify their different functional states as healthy, fractured, or cancerous using support vector machines. Classification accuracy comparison to related work shows that ECM-aware cell-graph approach yields 90.0% whereas Delaunay triangulation and simple cell-graph approach achieves 75.0% and 81.1% accuracy, respectively.

摘要

活检的病理检查是诊断骨癌最可靠且应用最广泛的技术。然而,它存在观察者间和观察者内的主观性。自动组织建模和分类技术可以减少这种主观性并提高骨癌诊断的准确性。本文提出了一种图论方法,称为细胞外基质(ECM)感知细胞图挖掘,该方法将ECM形成与苏木精和伊红(H&E)染色的骨组织样本组织病理学图像中的细胞分布相结合。由于其功能状态,该方法可以识别同一组织中共存的不同类型的细胞。因此,它能更精确地模拟结构-功能关系,并准确地对骨组织样本进行分类以用于癌症诊断。利用Hessian矩阵的特征值对组织图像进行分割,以计算细胞核的空间坐标作为相应细胞图的节点。分割后,根据其周围ECM的组成给每个节点分配一个颜色代码。如果相应的细胞膜有物理接触且颜色相同,则假设(并建立)两个节点之间存在一条边。因此,多个彩色细胞图共存于一个组织中,每个图模拟不同的细胞类型组织。计算ECM感知细胞图的拓扑和光谱特征,以量化组织样本的结构特性,并使用支持向量机将其不同的功能状态分类为健康、骨折或癌变。与相关工作的分类准确率比较表明,ECM感知细胞图方法的准确率为90.0%,而Delaunay三角剖分和简单细胞图方法的准确率分别为75.0%和81.1%。

相似文献

1
ECM-Aware Cell-Graph Mining for Bone Tissue Modeling and Classification.
Data Min Knowl Discov. 2009 Oct 21;20(3):416-438. doi: 10.1007/s10618-009-0153-2.
2
Cell-graph mining for breast tissue modeling and classification.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5311-4. doi: 10.1109/IEMBS.2007.4353540.
3
Using cell nuclei features to detect colon cancer tissue in hematoxylin and eosin stained slides.
Cytometry A. 2017 Aug;91(8):785-793. doi: 10.1002/cyto.a.23175. Epub 2017 Jul 20.
4
A technique for semiautomatic segmentation of echogenic structures in 3D ultrasound, applied to infant hip dysplasia.
Int J Comput Assist Radiol Surg. 2016 Jan;11(1):31-42. doi: 10.1007/s11548-015-1239-5. Epub 2015 Jun 20.
5
Learning the topological properties of brain tumors.
IEEE/ACM Trans Comput Biol Bioinform. 2005 Jul-Sep;2(3):262-70. doi: 10.1109/TCBB.2005.42.
6
Hierarchical graph representations in digital pathology.
Med Image Anal. 2022 Jan;75:102264. doi: 10.1016/j.media.2021.102264. Epub 2021 Oct 27.
7
Harary Spectra and Energy of Certain Classes of Graphs.
Curr Org Synth. 2025 Feb 4. doi: 10.2174/0115701794330372241114102237.
8
Wasserstein Discriminant Dictionary Learning for Graph Representation.
IEEE Trans Pattern Anal Mach Intell. 2024 Dec;46(12):8619-8635. doi: 10.1109/TPAMI.2024.3409772. Epub 2024 Nov 6.
10
Neural Graph Refinement for Robust Recognition of Nuclei Communities in Histopathological Landscape.
IEEE Trans Image Process. 2024;33:241-256. doi: 10.1109/TIP.2023.3337666. Epub 2023 Dec 19.

引用本文的文献

3
Tissues as networks of cells: towards generative rules of complex organ development.
J R Soc Interface. 2023 Jul;20(204):20230115. doi: 10.1098/rsif.2023.0115. Epub 2023 Jul 26.
4
Engineering Tissue Fabrication With Machine Intelligence: Generating a Blueprint for Regeneration.
Front Bioeng Biotechnol. 2020 Jan 10;7:443. doi: 10.3389/fbioe.2019.00443. eCollection 2019.
5
EpiGraph: an open-source platform to quantify epithelial organization.
Bioinformatics. 2020 Feb 15;36(4):1314-1316. doi: 10.1093/bioinformatics/btz683.
6
Prediction of Growth Factor-Dependent Cleft Formation During Branching Morphogenesis Using A Dynamic Graph-Based Growth Model.
IEEE/ACM Trans Comput Biol Bioinform. 2016 Mar-Apr;13(2):350-64. doi: 10.1109/TCBB.2015.2452916.
7
Pathology imaging informatics for quantitative analysis of whole-slide images.
J Am Med Inform Assoc. 2013 Nov-Dec;20(6):1099-108. doi: 10.1136/amiajnl-2012-001540. Epub 2013 Aug 19.
8
Coupled analysis of in vitro and histology tissue samples to quantify structure-function relationship.
PLoS One. 2012;7(3):e32227. doi: 10.1371/journal.pone.0032227. Epub 2012 Mar 30.
9
Multiscale feature analysis of salivary gland branching morphogenesis.
PLoS One. 2012;7(3):e32906. doi: 10.1371/journal.pone.0032906. Epub 2012 Mar 5.
10
The regulation of focal adhesion complex formation and salivary gland epithelial cell organization by nanofibrous PLGA scaffolds.
Biomaterials. 2012 Apr;33(11):3175-86. doi: 10.1016/j.biomaterials.2012.01.010. Epub 2012 Jan 27.

本文引用的文献

1
CELL SEGMENTATION USING HESSIAN-BASED DETECTION AND CONTOUR EVOLUTION WITH DIRECTIONAL DERIVATIVES.
Proc Int Conf Image Proc. 2008 Oct 12;2008:1804-1807. doi: 10.1109/ICIP.2008.4712127.
2
Cell-graph mining for breast tissue modeling and classification.
Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:5311-4. doi: 10.1109/IEMBS.2007.4353540.
3
A comparative study of fuzzy classification methods on breast cancer data.
Australas Phys Eng Sci Med. 2004 Dec;27(4):213-8. doi: 10.1007/BF03178651.
4
The cell graphs of cancer.
Bioinformatics. 2004 Aug 4;20 Suppl 1:i145-51. doi: 10.1093/bioinformatics/bth933.
5
Comparison of statistical methods for classification of ovarian cancer using mass spectrometry data.
Bioinformatics. 2003 Sep 1;19(13):1636-43. doi: 10.1093/bioinformatics/btg210.
6
Asymptotic behaviors of support vector machines with Gaussian kernel.
Neural Comput. 2003 Jul;15(7):1667-89. doi: 10.1162/089976603321891855.
7
Fractal analysis in the detection of colonic cancer images.
IEEE Trans Inf Technol Biomed. 2002 Mar;6(1):54-8. doi: 10.1109/4233.992163.
8
Lung cancer cell identification based on artificial neural network ensembles.
Artif Intell Med. 2002 Jan;24(1):25-36. doi: 10.1016/s0933-3657(01)00094-x.
9
Automated melanoma recognition.
IEEE Trans Med Imaging. 2001 Mar;20(3):233-9. doi: 10.1109/42.918473.
10
Support vector machine classification and validation of cancer tissue samples using microarray expression data.
Bioinformatics. 2000 Oct;16(10):906-14. doi: 10.1093/bioinformatics/16.10.906.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验