Suppr超能文献

序数分类变量在颅骨性别骨骼评估中的应用。

Use of ordinal categorical variables in skeletal assessment of sex from the cranium.

作者信息

Konigsberg L W, Hens S M

机构信息

Department of Anthropology, University of Tennessee, Knoxville 37996-0720, USA.

出版信息

Am J Phys Anthropol. 1998 Sep;107(1):97-112. doi: 10.1002/(SICI)1096-8644(199809)107:1<97::AID-AJPA8>3.0.CO;2-A.

Abstract

In anthropological studies, visual indicators of sex are traditionally scored on an ordinal categorical scale. Logistic and probit regression models are commonly used statistical tools for the analysis of ordinal categorical data. These models provide unbiased estimates of the posterior probabilities of sex conditional on observed indicators, but they do so only under certain conditions. We suggest a more general method for sexing using a multivariate cumulative probit model and examine both single indicator and multivariate indicator models on a sample of 138 crania from a Late Mississippian site in middle Tennessee. The crania were scored for five common sex indicators: superciliary arch form, chin form, size of mastoid process, shape of the supraorbital margin, and nuchal cresting. Independent assessment of sex for each individual is based on pubic indicators. The traditional logistic regressions are cumbersome because of limitations imposed by missing data. The logistic regression correctly classified 66/74 males and 46/64 females, with an overall correct classification of 81%. The cumulative probit model classified 64/74 males correctly and 51/64 females correctly for an overall correct classification rate of 83%. Finally, we apply parameters estimated from the logit and probit models to find posterior probabilities of sex assignment for 296 additional crania for which pubic indicators were absent or ambiguous.

摘要

在人类学研究中,性别的视觉指标传统上是按照有序分类量表进行评分的。逻辑回归模型和概率单位回归模型是分析有序分类数据常用的统计工具。这些模型能提供基于观察指标的性别的后验概率的无偏估计,但前提是要满足某些条件。我们提出一种使用多元累积概率单位模型进行性别鉴定的更通用方法,并在田纳西州中部一个密西西比晚期遗址的138个头骨样本上检验了单指标模型和多指标模型。对头骨的五个常见性别指标进行了评分:眉弓形态、下巴形态、乳突大小、眶上缘形状和项嵴。对每个个体的性别进行独立评估是基于耻骨指标。由于缺失数据带来的限制,传统的逻辑回归很麻烦。逻辑回归正确地将74名男性中的66名和64名女性中的46名进行了分类,总体正确分类率为81%。累积概率单位模型正确地将74名男性中的64名和6名女性中的51名进行了分类,总体正确分类率为83%。最后,我们应用从逻辑回归模型和概率单位回归模型估计出的参数,来找出另外296个头骨的性别分配后验概率,这些头骨的耻骨指标缺失或不明确。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验