Suppr超能文献

心肌氧化磷酸化的动态调节:氧消耗反应时间分析

The dynamic regulation of myocardial oxidative phosphorylation: analysis of the response time of oxygen consumption.

作者信息

van Beek J H, Tian X, Zuurbier C J, de Groot B, van Echteld C J, Eijgelshoven M H, Hak J B

机构信息

Laboratory for Physiology, Institute for Cardiovascular Research (ICaR-VU), Vrije Universiteit, Amsterdam, The Netherlands.

出版信息

Mol Cell Biochem. 1998 Jul;184(1-2):321-44.

PMID:9746328
Abstract

Although usually steady-state fluxes and metabolite levels are assessed for the study of metabolic regulation, much can be learned from studying the transient response during quick changes of an input to the system. To this end we study the transient response of O2 consumption in the heart during steps in heart rate. The time course is characterized by the mean response time of O2 consumption which is the first statistical moment of the impulse response function of the system (for mono-exponential responses equal to the time constant). The time course of O2 uptake during quick changes is measured with O2 electrodes in the arterial perfusate and venous effluent of the heart, but the venous signal is delayed with respect to O2 consumption in the mitochondria due to O2 diffusion and vascular transport. We correct for this transport delay by using the mass balance of O2, with all terms (e.g. O2 consumption and vascular O2 transport) taken as function of time. Integration of this mass balance over the duration of the response yields a relation between the mean transit time for O2 and changes in cardiac O2 content. Experimental data on the response times of venous [O2] during step changes in arterial [O2] or in perfusion flow are used to calculate the transport time between mitochondria and the venous O2 electrode. By subtracting the transport time from the response time measured in the venous outflow the mean response time of mitochondrial O2 consumption (tmito) to the step in heart rate is obtained. In isolated rabbit heart we found that tmito to heart rate steps is 4-12 s at 37 degrees C. This means that oxidative phosphorylation responds to changing ATP hydrolysis with some delay, so that the phosphocreatine levels in the heart must be decreased, at least in the early stages after an increase in cardiac ATP hydrolysis. Changes in ADP and inorganic phosphate (Pi) thus play a role in regulating the dynamic adaptation of oxidative phosphorylation, although most steady state NMR measurements in the heart had suggested that ADP and Pi do not change. Indeed, we found with 31P-NMR spectroscopy that phosphocreatine (PCr) and Pi change in the first seconds after a quick change in ATP hydrolysis, but remarkably they do this significantly faster (time constant approximately 2.5 s) than mitochondrial O2 consumption (time constant 12 s). Although it is quite likely that other factors besides ADP and Pi regulate cardiac oxidative phosphorylation, a fascinating alternative explanation is that the first changes in PCr measured with NMR spectroscopy took exclusively place in or near the myofibrils, and that a metabolic wave must then travel with some delay to the mitochondria to stimulate oxidative phosphorylation. The tmito slows with falling temperature, intracellular acidosis, and sometimes also during reperfusion following ischemia and with decreased mitochondrial aerobic capacity. In conclusion, the study of the dynamic adaptation of cardiac oxidative phosphorylation to demand using the mean response time of cardiac mitochondrial O2 consumption is a very valuable tool to investigate the regulation of cardiac mitochondrial energy metabolism in health and disease.

摘要

虽然通常通过评估稳态通量和代谢物水平来研究代谢调节,但研究系统输入快速变化期间的瞬态响应也能获得很多信息。为此,我们研究心率阶跃变化期间心脏中氧气消耗的瞬态响应。时间进程由氧气消耗的平均响应时间来表征,它是系统脉冲响应函数的一阶统计矩(对于单指数响应,等于时间常数)。在心脏的动脉灌注液和静脉流出液中使用氧气电极测量快速变化期间的氧气摄取时间进程,但由于氧气扩散和血管运输,静脉信号相对于线粒体中的氧气消耗会延迟。我们通过使用氧气的质量平衡来校正这种运输延迟,将所有项(例如氧气消耗和血管氧气运输)视为时间的函数。在响应持续时间内对该质量平衡进行积分,可得到氧气的平均转运时间与心脏氧气含量变化之间的关系。利用动脉[O₂]或灌注流量阶跃变化期间静脉[O₂]响应时间的实验数据,计算线粒体与静脉氧气电极之间的运输时间。通过从静脉流出中测量的响应时间中减去运输时间,可得到线粒体氧气消耗(tmito)对心率阶跃的平均响应时间。在离体兔心脏中,我们发现在37℃时,tmito对心率阶跃的响应时间为4 - 12秒。这意味着氧化磷酸化对ATP水解变化的响应存在一定延迟,因此心脏中的磷酸肌酸水平必须降低,至少在心脏ATP水解增加后的早期阶段是这样。因此,ADP和无机磷酸(Pi)的变化在调节氧化磷酸化的动态适应中起作用,尽管心脏中的大多数稳态NMR测量表明ADP和Pi没有变化。实际上,我们通过³¹P - NMR光谱发现,在ATP水解快速变化后的最初几秒内,磷酸肌酸(PCr)和Pi会发生变化,但值得注意的是,它们的变化速度(时间常数约为2.5秒)比线粒体氧气消耗(时间常数12秒)快得多。虽然很可能除了ADP和Pi之外还有其他因素调节心脏氧化磷酸化,但一个引人入胜的替代解释是,NMR光谱测量到的PCr的最初变化仅发生在肌原纤维内或其附近,然后代谢波必须有一定延迟地传播到线粒体以刺激氧化磷酸化。tmito会随着温度降低、细胞内酸中毒而减慢,有时在缺血后的再灌注期间以及线粒体有氧能力下降时也会减慢。总之,利用心脏线粒体氧气消耗的平均响应时间来研究心脏氧化磷酸化对需求的动态适应,是研究健康和疾病状态下心脏线粒体能量代谢调节的非常有价值的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验