Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology, Amsterdam Infection & Immunity, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Université catholique de Louvain, Brussels, Belgium.
J Cell Mol Med. 2020 Jun;24(11):5937-5954. doi: 10.1111/jcmm.15180. Epub 2020 May 8.
Reducing infarct size during a cardiac ischaemic-reperfusion episode is still of paramount importance, because the extension of myocardial necrosis is an important risk factor for developing heart failure. Cardiac ischaemia-reperfusion injury (IRI) is in principle a metabolic pathology as it is caused by abruptly halted metabolism during the ischaemic episode and exacerbated by sudden restart of specific metabolic pathways at reperfusion. It should therefore not come as a surprise that therapy directed at metabolic pathways can modulate IRI. Here, we summarize the current knowledge of important metabolic pathways as therapeutic targets to combat cardiac IRI. Activating metabolic pathways such as glycolysis (eg AMPK activators), glucose oxidation (activating pyruvate dehydrogenase complex), ketone oxidation (increasing ketone plasma levels), hexosamine biosynthesis pathway (O-GlcNAcylation; administration of glucosamine/glutamine) and deacetylation (activating sirtuins 1 or 3; administration of NAD -boosting compounds) all seem to hold promise to reduce acute IRI. In contrast, some metabolic pathways may offer protection through diminished activity. These pathways comprise the malate-aspartate shuttle (in need of novel specific reversible inhibitors), mitochondrial oxygen consumption, fatty acid oxidation (CD36 inhibitors, malonyl-CoA decarboxylase inhibitors) and mitochondrial succinate metabolism (malonate). Additionally, protecting the cristae structure of the mitochondria during IR, by maintaining the association of hexokinase II or creatine kinase with mitochondria, or inhibiting destabilization of F F -ATPase dimers, prevents mitochondrial damage and thereby reduces cardiac IRI. Currently, the most promising and druggable metabolic therapy against cardiac IRI seems to be the singular or combined targeting of glycolysis, O-GlcNAcylation and metabolism of ketones, fatty acids and succinate.
减少心脏缺血再灌注期间的梗死面积仍然至关重要,因为心肌坏死的扩展是心力衰竭发展的重要危险因素。心脏缺血再灌注损伤(IRI)原则上是一种代谢性疾病,因为它是由缺血期间代谢突然停止引起的,并在再灌注时突然重新启动特定代谢途径而加剧。因此,针对代谢途径的治疗可以调节 IRI 并不奇怪。在这里,我们总结了重要代谢途径作为治疗靶点以对抗心脏 IRI 的最新知识。激活代谢途径,如糖酵解(例如 AMPK 激活剂)、葡萄糖氧化(激活丙酮酸脱氢酶复合物)、酮体氧化(增加酮体血浆水平)、己糖胺生物合成途径(O-GlcNAc 化;给予葡萄糖/谷氨酰胺)和去乙酰化(激活 Sirtuins 1 或 3;给予 NAD 增强化合物)似乎都有希望减少急性 IRI。相比之下,一些代谢途径可能通过减弱活性提供保护。这些途径包括苹果酸-天冬氨酸穿梭(需要新型特定可逆抑制剂)、线粒体耗氧量、脂肪酸氧化(CD36 抑制剂、丙二酰辅酶 A 脱羧酶抑制剂)和线粒体琥珀酸代谢(丙二酸)。此外,通过保持己糖激酶 II 或肌酸激酶与线粒体的结合,或抑制 F F -ATP 酶二聚体的不稳定性,在 IR 期间保护线粒体嵴结构,防止线粒体损伤,从而减少心脏 IRI。目前,针对心脏 IRI 的最有前途和最具药物开发潜力的代谢治疗似乎是单一或联合靶向糖酵解、O-GlcNAc 化以及酮体、脂肪酸和琥珀酸的代谢。