Suppr超能文献

线粒体功能作为细胞对损伤反应中恢复或死亡的决定因素。

Mitochondrial function as a determinant of recovery or death in cell response to injury.

作者信息

Di Lisa F, Bernardi P

机构信息

CNR Unit for the Study of Biomembranes and the Department of Biological Chemistry, University of Padova, Italy.

出版信息

Mol Cell Biochem. 1998 Jul;184(1-2):379-91.

PMID:9746332
Abstract

Many pathological conditions can be the cause or the consequence of mitochondrial dysfunction. For instance anoxia, which is initiated by a critical reduction of oxygen availability for mitochondrial oxidations, is followed by a wide variety of mitochondrial alterations. A crucial role in the evolution of cell injury is to be attributed to the direction of operation of the F0F1 ATPase, which may turn mitochondria into the major consumers of cellular ATP in the futile attempt to restore the proton electrochemical gradient. On the other hand, functional mitochondria can paradoxically accelerate or exacerbate cell damage. This concept is particularly relevant for the ischemic myocardium. Indeed, inhibition of the respiratory chain or addition of uncouplers of oxidative phosphorylation can both limit the extent of enzyme release in the intact heart and prevent the onset of irreversible morphological changes in isolated myocytes. From studies on different tissues in a variety of pathological conditions a general consensus emerges on the role of intracellular Ca2+ overload as a pivotal link between cellular alterations and mitochondrial dysfunction. Oxidative phosphorylation is reduced by a massive mitochondrial uptake of Ca2+, resulting in a vicious cycle whereby the reduced ATP availability is followed by a failure of the mechanisms which extrude Ca2+ from the sarcoplasm. In addition, the rise in [Ca2+]i could promote opening of the cyclosporin-sensitive mitochondrial permeability transition pore, leading to a sudden deltapsi(m) dissipation. Here, we review the changes in intracellular and intramitochondrial ionic homeostasis occurring during ischemia and reperfusion. In particular, we evaluate the potential contribution of the permeability transition pore to cellular damage and discuss the mechanisms which can determine the cellular fate from a mitochondrial point of view.

摘要

许多病理状况可能是线粒体功能障碍的原因或结果。例如,缺氧是由线粒体氧化所需氧气供应的严重减少引发的,随后会出现各种各样的线粒体改变。F0F1 ATP酶的运转方向在细胞损伤的发展过程中起着关键作用,它可能会使线粒体在徒劳地试图恢复质子电化学梯度的过程中成为细胞ATP的主要消耗者。另一方面,功能正常的线粒体却可能反常地加速或加剧细胞损伤。这一概念对于缺血心肌尤为重要。事实上,抑制呼吸链或添加氧化磷酸化解偶联剂,既能限制完整心脏中酶的释放程度,又能防止分离的心肌细胞中出现不可逆的形态学变化。通过对各种病理状况下不同组织的研究,人们就细胞内Ca2+超载作为细胞改变与线粒体功能障碍之间的关键环节这一作用达成了普遍共识。大量线粒体摄取Ca2+会降低氧化磷酸化,从而导致恶性循环,即ATP供应减少之后,肌浆中Ca2+的排出机制失效。此外,细胞内Ca2+浓度升高可能会促进对环孢菌素敏感的线粒体通透性转换孔的开放,导致线粒体膜电位突然耗散。在此,我们综述了缺血和再灌注期间细胞内和线粒体内离子稳态的变化。特别是,我们评估了通透性转换孔对细胞损伤的潜在影响,并从线粒体的角度讨论了决定细胞命运的机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验