Esler M
Baker Medical Research Institute, Melbourne, Australia.
J Hypertens Suppl. 1998 Aug;16(3):S19-24.
Biochemical, electrophysiological, pharmacological and haemodynamic findings support the existence of sympathetic nervous system activation in primary human hypertension. Analysis of regional sympathetic nervous system function, using both neurophysiological methods for measuring sympathetic nerve firing rates, and neurochemical techniques for quantifying regional noradrenaline spillover to plasma has demonstrated activation of the sympathetic nervous outflows to the heart, the kidneys, and skeletal muscle vasculature, particularly in younger patients. The initiating cause of this sympathetic nervous stimulation is unknown, but estimation of central nervous system noradrenaline turnover in hypertensive patients, using measurements of the washout of noradrenaline and its lipophilic metabolites into the internal jugular veins, indicates that activation of forebrain pressor noradrenergic nuclei is the probable underlying mechanism. CONSEQUENCES OF INCREASED SYMPATHETIC ACTIVITY: The sympathetic activation present in human hypertension no doubt contributes to the blood pressure elevation, and is a legitimate target for therapeutic intervention with imidazoline receptor-binding agents such as rilmenidine. In addition, the sympathetic nervous activation seems to have adverse consequences in hypertensive patients beyond initiating the blood pressure elevation. There is evidence that neural vasoconstriction has metabolic effects, in skeletal muscle impairing glucose delivery to muscle, causing insulin resistance and hyperinsulinaemia, and in liver retarding postprandial clearing of lipids, contributing to hyperlipidaemia. Cardiac sympathetic activation is demonstrably a cause of sudden death in heart failure patients; a comparable arrhythmogenic effect is probable in hypertension. A trophic effect of sympathetic activation on cardiovascular growth is also likely, contributing to the development of left ventricular hypertrophy. Rilmenidine, through its central nervous system actions, has been demonstrated to powerfully reduce sympathetic nervous activity in essential hypertension patients. INHIBITING THE SYMPATHETIC SYSTEM: As the clinical consequences of sympathetic nervous activation in essential hypertension appear to go beyond that of hypertension pathogenesis, extending to a causal influence in atherosclerosis development, cardiovascular hypertrophy and cardiac arrhythmias, it is possible that, of all antihypertensive drugs, those inhibiting the sympathetic nervous system might best reduce cardiovascular risk. This remains to be tested.
生物化学、电生理学、药理学及血流动力学研究结果均支持原发性高血压患者存在交感神经系统激活。运用神经生理学方法测量交感神经放电频率以及神经化学技术定量分析局部去甲肾上腺素向血浆中的溢出量,对局部交感神经系统功能进行分析,结果表明,尤其是在年轻患者中,心脏、肾脏及骨骼肌血管系统的交感神经输出被激活。这种交感神经刺激的起始原因尚不清楚,但通过测量去甲肾上腺素及其亲脂性代谢产物向颈内静脉的清除率来估算高血压患者中枢神经系统去甲肾上腺素的周转率,结果表明,前脑升压去甲肾上腺素能核的激活可能是潜在机制。交感神经活动增强的后果:人类高血压中存在的交感神经激活无疑会导致血压升高,是使用利美尼定等咪唑啉受体结合剂进行治疗干预的合理靶点。此外,交感神经激活似乎在高血压患者中除了引发血压升高外还会产生不良后果。有证据表明,神经血管收缩具有代谢效应,在骨骼肌中会损害葡萄糖向肌肉的输送,导致胰岛素抵抗和高胰岛素血症,在肝脏中会延缓餐后脂质清除,导致高脂血症。心脏交感神经激活显然是心力衰竭患者猝死的原因之一;在高血压中可能也存在类似的致心律失常作用。交感神经激活对心血管生长的营养作用也很可能存在,这有助于左心室肥厚的发展。利美尼定通过其对中枢神经系统的作用,已被证明能有效降低原发性高血压患者的交感神经活动。抑制交感神经系统:由于原发性高血压中交感神经激活的临床后果似乎超出了高血压发病机制的范畴,延伸至对动脉粥样硬化发展、心血管肥厚和心律失常的因果影响,因此在所有抗高血压药物中,那些抑制交感神经系统的药物可能最能降低心血管风险。这仍有待验证。