Suppr超能文献

基于α消耗函数构建连续停止边界。

Construction of a continuous stopping boundary from an alpha spending function.

作者信息

Betensky R A

机构信息

Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA.

出版信息

Biometrics. 1998 Sep;54(3):1061-71.

PMID:9750252
Abstract

Lan and DeMets (1983, Biometrika 70, 659-663) proposed a flexible method for monitoring accumulating data that does not require the number and times of analyses to be specified in advance yet maintains an overall Type I error, alpha. Their method amounts to discretizing a preselected continuous boundary by clumping the density of the boundary crossing time at discrete analysis times and calculating the resultant discrete-time boundary values. In this framework, the cumulative distribution function of the continuous-time stopping rule is used as an alpha spending function. A key assumption that underlies this method is that future analysis times are not chosen on the basis of the current value of the statistic. However, clinical trials may be monitored more frequently when they are close to crossing the boundary. In this situation, the corresponding continuous-time boundary should be used. Here we demonstrate how to construct a continuous stopping boundary from an alpha spending function. This capability is useful in the design of clinical trials. We use the Beta-Blocker Heart Attack Trial (BHAT) and AIDS Clinical Trials Group protocol 021 for illustration.

摘要

兰和德梅茨(1983年,《生物统计学》第70卷,659 - 663页)提出了一种灵活的方法来监测累积数据,该方法不需要预先指定分析的次数和时间,同时能保持总体第一类错误率α。他们的方法相当于通过将边界穿越时间的密度聚集在离散分析时间点来离散化一个预先选定的连续边界,并计算由此产生的离散时间边界值。在此框架下,连续时间停止规则的累积分布函数被用作α消耗函数。该方法的一个关键假设是未来的分析时间不是基于当前统计量的值来选择的。然而,当临床试验接近边界时,可能会更频繁地进行监测。在这种情况下,应使用相应的连续时间边界。在此我们展示如何从α消耗函数构建一个连续停止边界。此功能在临床试验设计中很有用。我们用β受体阻滞剂心肌梗死试验(BHAT)和艾滋病临床试验组方案021进行说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验