Suppr超能文献

Transgenic mice with increased copper/zinc-superoxide dismutase activity are resistant to hepatic leukostasis and capillary no-reflow after gut ischemia/reperfusion.

作者信息

Horie Y, Wolf R, Flores S C, McCord J M, Epstein C J, Granger D N

机构信息

Department of Molecular and Cellular Physiology, Louisiana State University Medical Center, Shreveport, LA 71130-3992, USA.

出版信息

Circ Res. 1998 Oct 5;83(7):691-6. doi: 10.1161/01.res.83.7.691.

Abstract

The objectives of this study were to (1) determine whether transgenic (Tg) mice overexpressing copper/zinc-superoxide dismutase (CuZn-SOD) are protected from the deleterious effects of gut ischemia/reperfusion (I/R) and (2) compare the effectiveness of Tg SOD overexpression in attenuating I/R injury to intravascularly administered CuZn-SOD or manganese (Mn)-SOD. The accumulation of fluorescently labeled leukocytes and number of nonperfused sinusoids were monitored by intravital microscopy in livers of wild-type mice (C57BL/6), CuZn-SOD Tg mice, and wild-type mice receiving either CuZn-SOD or Mn-SOD. All parameters were measured for 1 hour after release of the occluded (for 15 minutes) superior mesenteric artery. Gut I/R in wild-type mice led to an increased number of stationary leukocytes, while reducing the number of perfused sinusoids (capillary no-reflow). All of these responses were significantly blunted in CuZn-SOD Tg mice, with a corresponding attenuation of liver enzyme release into plasma. Exogenously administered SOD had little or no effect on gut I/R-induced leukostasis or capillary no-reflow in the liver. These observations suggest a role for superoxide in gut I/R-induced leukostasis and hypoxic stress in the liver. Furthermore, the findings suggest that cellular localization of SOD activity is an important determinant of the protective actions of this enzyme in experimental models of I/R injury.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验